Giải bài 7.35 trang 41 sách bài tập toán 11 - Kết nối tri thức với cuộc sống


Cho hình lăng trụ \(ABC \cdot A'B'C'\) có \(A'B'C'\) và \(AA'C'\) là hai tam giác đều cạnh \(a\).

Đề bài

Cho hình lăng trụ \(ABC \cdot A'B'C'\) có \(A'B'C'\) và \(AA'C'\) là hai tam giác đều cạnh \(a\). Biết \(\left( {ACC'A'} \right) \bot \left( {A'B'C'} \right)\). Tính theo \(a\) thể tích khối lăng trụ \(ABC \cdot A'B'C'\).

Phương pháp giải - Xem chi tiết

Áp dụng công thức tính thể tích khối lăng trụ: \(S = B.h\).

Trong đó: \(B\) là diện tích đa giác đáy

\(h\) là đường cao của hình lăng trụ

Lời giải chi tiết

Kẻ \(AH \bot A'C'\) tại \(H\) thì \(AH \bot \left( {A'B'C'} \right)\).

Ta có \({S_{A'B'C'}} = \frac{{{a^2}\sqrt 3 }}{4};AH = \frac{{a\sqrt 3 }}{2}\)

Suy ra \({V_{ABC.A'B'C'}} = {S_{A'B'C'}} \cdot AH\)\( = \frac{{{a^2}\sqrt 3 }}{4} \cdot \frac{{a\sqrt 3 }}{2} = \frac{{3{a^3}}}{8}\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí