Giải bài 7.25 trang 56 SGK Toán 10 – Kết nối tri thức>
Khúc của của một con đường có dạng hình parabol, điềm đầu vào khúc cua là A, điểm cuối là B, khoảng cách AB = 400 m. Đỉnh parabol (P) của khúc của cách đường thẳng ABmột khoảng 20 m và cách đều A, B (H.7.34).
Đề bài
Khúc của của một con đường có dạng hình parabol, điềm đầu vào khúc cua là A, điểm cuối là B, khoảng cách AB = 400 m. Đỉnh parabol (P) của khúc của cách đường thẳng ABmột khoảng 20 m và cách đều A, B (H.7.34).
a) Lập phương trình chính tắc của (P), với 1 đơn vị đo trong mặt phẳng toạ độ tương ứng 1 m trên thực tế.
b) Lập phương trình chính tắc của (P), với 1 đơn vị đo trong mặt phẳng toạ độ tương ứng 1 km trên thực tế.
Phương pháp giải - Xem chi tiết
Gọi phương trình chính tắc của (P) và sử dụng điều kiện (P) đi qua điểm thỏa mãn để tìm phương trình (P).
Lời giải chi tiết
Phương trình chính tắc của parabol (P) có dạng \({y^2} = 2px\left( {p > 0} \right)\).
a) Khi 1 đơn vị đo trong mặt phẳng tọa độ ứng với 1m trên thực tế, ta có \(B\left( {20;200} \right)\).
Thay tọa độ điểm B vào phương trình của (P) ta được \({200^2} = 2p.20 \Leftrightarrow p = 1000\).
Vậy phương trình chính tắc của (P) là: \({y^2} = 2000x\).
b) Khi 1 đơn vị đo trong mặt phẳng tọa độ ứng với 1km trên thực tế, ta có \(B\left( {0,02;0,2} \right)\).
Tương tự, ta có phương trình chính tắc của (P) là \({y^2} = 2x\).
- Giải bài 7.24 trang 56 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.23 trang 56 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.22 trang 56 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.21 trang 56 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.20 trang 56 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay