Giải bài 7 trang 76 sách bài tập toán 12 - Chân trời sáng tạo


Cho điểm \(M\left( {3; - 1;2} \right)\). Tìm: a) Toạ độ điểm \(M'\) là điểm đối xứng của điểm \(M\) qua gốc toạ độ \(O\). b) Toạ độ điểm \(O'\) là điểm đối xứng của điểm \(O\) qua điểm \(M\). c) Khoảng cách từ \(M\) đến gốc toạ độ. d) Khoảng cách từ \(M\) đến mặt phẳng \(\left( {Oxz} \right)\).

Đề bài

Cho điểm \(M\left( {3; - 1;2} \right)\). Tìm:

a) Toạ độ điểm \(M'\) là điểm đối xứng của điểm \(M\) qua gốc toạ độ \(O\).

b) Toạ độ điểm \(O'\) là điểm đối xứng của điểm \(O\) qua điểm \(M\).

c) Khoảng cách từ \(M\) đến gốc toạ độ.

d) Khoảng cách từ \(M\) đến mặt phẳng \(\left( {Oxz} \right)\).

Phương pháp giải - Xem chi tiết

‒ \(M'\) là điểm đối xứng của điểm \(M\) qua điểm \(I\) thì \(I\) là trung điểm của \(MM'\).

‒ Khoảng cách từ \(M\) đến gốc toạ độ là độ dài đoạn thẳng \(OM\).

‒ Để tính khoảng cách từ \(M\) đến mặt phẳng \(\left( {Oxz} \right)\), ta tìm điểm \(M'\) là hình chiếu của \(M\) đến mặt phẳng \(\left( {Oxz} \right)\). Khi đó khoảng cách từ \(M\) đến mặt phẳng \(\left( {Oxz} \right)\) bằng độ dài đoạn thẳng \(MM'\).

Lời giải chi tiết

a) Giả sử \(M'\left( {{x_{M'}};{y_{M'}};{z_{M'}}} \right)\).

\(M'\) là điểm đối xứng của điểm \(M\) qua gốc toạ độ \(O\) thì \(O\) là trung điểm của \(MM'\).

Do đó \(\left\{ \begin{array}{l}3 + {x_{M'}} = 2.0\\ - 1 + {y_{M'}} = 2.0\\2 + {z_{M'}} = 2.0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{M'}} =  - 3\\{y_{M'}} = 1\\{z_{M'}} =  - 2\end{array} \right.\). Vậy \(M'\left( { - 3;1; - 2} \right)\).

b) Giả sử \(O'\left( {{x_{O'}};{y_{O'}};{z_{O'}}} \right)\).

\(O'\) là điểm đối xứng của điểm \(O\) qua điểm \(M\) thì \(M\) là trung điểm của \(OO'\).

Do đó \(\left\{ \begin{array}{l}0 + {x_{O'}} = 2.3\\0 + {y_{O'}} = 2.\left( { - 1} \right)\\0 + {z_{O'}} = 2.2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{O'}} = 6\\{y_{O'}} =  - 2\\{z_{O'}} = 4\end{array} \right.\). Vậy \(O'\left( {6; - 2;4} \right)\).

c) \(OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{{\left( {3 - 0} \right)}^2} + {{\left( { - 1 - 0} \right)}^2} + {{\left( {2 - 0} \right)}^2}}  = \sqrt {14} \).

d) Gọi \({M_1}\) là hình chiếu của \(M\) lên mặt phẳng \(\left( {Oxz} \right)\). Khi đó \({M_1}\left( {3;0;2} \right)\).

\(d\left( {M,\left( {Oxz} \right)} \right) = M{M_1} = \left| {\overrightarrow {M{M_1}} } \right| = \sqrt {{{\left( {3 - 3} \right)}^2} + {{\left( {0 - \left( { - 1} \right)} \right)}^2} + {{\left( {2 - 2} \right)}^2}}  = 1\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Chân trời sáng tạo - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí