Giải bài 6 trang 73 sách bài tập toán 8 - Chân trời sáng tạo tập 2


Cho $\Delta MNP\backsim \Delta EFG$, cho biết \(MN = 8cm,NP = 15cm,FG = 12cm\). Khi đó EF bằng:

Đề bài

Cho $\Delta MNP\backsim \Delta EFG$, cho biết \(MN = 8cm,NP = 15cm,FG = 12cm\). Khi đó EF bằng:

A. 9cm.

B. 6,4cm.

C. 22,5cm.

D. 10cm.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về định nghĩa hai tam giác đồng dạng để tính: Tam giác A’B’C’ gọi là đồng dạng với tam giác ABC nếu \(\widehat {A'} = \widehat A,\widehat {B'} = \widehat B,\widehat {C'} = \widehat C,\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = k\) (k gọi là tỉ số đồng dạng) 

Lời giải chi tiết

Vì $\Delta MNP\backsim \Delta EFG$ nên \(\frac{{MN}}{{EF}} = \frac{{NP}}{{FG}}\), suy ra \(\frac{8}{{EF}} = \frac{{15}}{{12}} = \frac{5}{4}\), nên \(EF = \frac{{8.4}}{5} = \frac{{32}}{5} = 6,4\left( {cm} \right)\)

Chọn B


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí