Giải bài 6 trang 62 vở thực hành Toán 8


Cho tam giác ABC vuông tại A. Trên cạnh AB lấy điểm K, trên cạnh AC lấy điểm H

Đề bài

Cho tam giác ABC vuông tại A. Trên cạnh AB lấy điểm K, trên cạnh AC lấy điểm H sao cho BK = CH. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh KH, BH, BC, CK. Chứng minh rằng MNPQ là hình vuông.

Phương pháp giải - Xem chi tiết

MNPQ là hình bình hành hình thoi hình vuông.

Lời giải chi tiết

(H.3.37). Vì MK = MH, NB = NH  MN là đường trung bình trong tam giác HKB.

 MN // KB và MN = \(\frac{1}{2}\)KB (1)

Chứng minh tương tự, ta có:

PQ // KB và PQ = \(\frac{1}{2}\)KB (2)

NP // CH và NP = \(\frac{1}{2}\)CH (3)

Từ (1) và (2), ta có MN // PQ và MN = PQ  MNPQ là hình bình hành (4)

Ta có BK = CH (giả thiết). (5)

Từ (1), (3) và (5), ta có MN = NP  MNPQ là hình thoi (6)

Vì ∆ABC vuông tại A (giả thiết)  BK  CH, mà NP // CH, MN // KB (chứng minh trên).

 MN  NP (7).

Từ (6) và (7), ta có MNPQ là hình thoi có một góc vuông nên nó là hình vuông.


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K11 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí