Giải bài 6 trang 15 SGK Toán 10 tập 1 – Chân trời sáng tạo


Cho các mệnh đề sau: P: “Giá trị tuyệt đối của mọi số thực đều lớn hơn hoặc bằng chính nó” Q: “Có số tự nhiên sao cho bình phương của nó bằng 10”

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Cho các mệnh đề sau:

P: “Giá trị tuyệt đối của mọi số thực đều lớn hơn hoặc bằng chính nó”

Q: “Có số tự nhiên sao cho bình phương của nó bằng 10”

R: “Có số thực x sao cho \({x^2} + 2x - 1 = 0\)”

a) Xét tính đúng sai của mỗi mệnh đề trên.

b) Sử dụng kí hiệu \(\forall ,\exists \) để viết lại các mệnh đề đã cho.

Phương pháp giải - Xem chi tiết

a) Kiểm tra tính đúng sai cho mệnh đề.

b) Viết lại mệnh đề với các kí hiệu:

+ Kí hiệu  đọc là “với mọi”.

+ Kí hiệu  đọc là “tồn tại”.

Lời giải chi tiết

a) Mệnh đề P đúng, vì: \(\left| x \right| = \left\{ \begin{array}{l}x\quad \;\;(x \ge 0)\\ - x\quad (x < 0)\end{array} \right.\) nên \(\left| x \right| \ge x\).

Mệnh đề Q sai vì chỉ có các số \( \pm \sqrt {10} \) có bình phương bằng 10, nhưng \(\sqrt {10} \) và \( - \sqrt {10} \) đều không là số tự nhiên.

Mệnh đề R đúng vì \(x =  - 1 + \sqrt 2  \in \mathbb{R}\) thỏa mãn \({x^2} + 2x - 1 = 0.\)

b) Có thể viết lại các mệnh đề trên như sau:

P: “\(\forall x \in \mathbb{R},\;\left| x \right| \ge x\)”

Q: “\(\exists n \in \mathbb{N},{n^2} = 10\)”

R: “\(\exists x \in \mathbb{R},\;{x^2} + 2x - 1 = 0\)”


Bình chọn:
4.5 trên 23 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí