Giải bài 5 trang 95 SGK Toán 10 – Kết nối tri thức>
Trongg khai triển nhị thức Newton của
Đề bài
Trongg khai triển nhị thức Newton của \({(2 + 3x)^4}\), hệ số của \({x^2}\) là:
A. 9
B. \(C_4^2\)
C. \(9C_4^2\)
D. \(36C_4^2\)
Phương pháp giải - Xem chi tiết
\({(a + b)^4} = C_4^0{a^4} + C_4^1{a^3}b + C_4^2{a^2}{b^2} + C_4^3a{b^3} + C_4^4{b^4}\)
Lời giải chi tiết
Ta có:
\({(2 + 3x)^4} = C_4^0{2^4} + C_4^1{2^3}3x + C_4^2{2^2}{\left( {3x} \right)^2} + C_4^32.{\left( {3x} \right)^3} + C_4^4{\left( {3x} \right)^4}\)
=> Hệ số của của \({x^2}\)là \(C_4^2{.2^2}{.3^2} = 36C_4^2.\)
Chọn D
- Giải bài 6 trang 95 SGK Toán 10 – Kết nối tri thức
- Giải bài 7 trang 95 SGK Toán 10 – Kết nối tri thức
- Giải bài 8 trang 96 SGK Toán 10 – Kết nối tri thức
- Giải bài 9 trang 96 SGK Toán 10 – Kết nối tri thức
- Giải bài 10 trang 96 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay