Giải bài 5 trang 39 Chuyên đề học tập Toán 10 – Chân trời sáng tạo>
Chứng minh công thức nhị thức Newton (công thức (1) trang 35) bằn phương pháp quy nạp toán học.
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Chứng minh công thức nhị thức Newton (công thức (1) trang 35) bằn phương pháp quy nạp toán học.
Phương pháp giải - Xem chi tiết
Chứng minh mệnh đề đúng với \(n \ge p\) thì:
Bước 1: Kiểm tra mệnh đề là đúng với \(n = p\)
Bước 2: Giả thiết mệnh đề đúng với số tự nhiên \(n = k \ge p\) và chứng minh mệnh đề đúng với \(n = k + 1.\) Kết luận.
Lời giải chi tiết
Công thức nhị thức Newton: \({(a + b)^n} = C_n^0{a^n} + C_n^1{a^{n - 1}}b + ... + C_n^{n - 1}a{b^{n - 1}} + C_n^n{b^n}\)
Ta chứng minh công thức nhị thức Newton bằng quy nạp theo n.
Bước 1: Với \(n = 1\) ta có \({(a + b)^1} = C_1^0a + C_1^1b\quad ( = a + b)\)
Như vậy công thức đúng cho trường hợp \(n = 1\)
Bước 2: Giả sử công thức đúng với \(n = k\), nghĩa là có:
\({(a + b)^k} = C_k^0{a^k} + C_k^1{a^{k - 1}}b + ... + C_k^{k - 1}a{b^{k - 1}} + C_k^k{b^k}\)
Ta sẽ chứng minh công thức cũng đúng với \(n = k + 1\), nghĩa là cần chứng minh
\({(a + b)^{k + 1}} = C_{k + 1}^0{a^{k + 1}} + C_{k + 1}^1{a^k}b + ... + C_{k + 1}^ka{b^k} + C_{k + 1}^{k + 1}{b^{k + 1}}\)
Thật vậy ta có
\(\begin{array}{l}{(a + b)^{k + 1}} = {(a + b)^k}(a + b) = \left( {C_k^0{a^k} + C_k^1{a^{k - 1}}b + ... + C_k^{k - 1}a{b^{k - 1}} + C_k^k{b^k}} \right)(a + b)\\ = \left( {C_k^0{a^k} + C_k^1{a^{k - 1}}b + ... + C_k^{k - 1}a{b^{k - 1}} + C_k^k{b^k}} \right)a + \left( {C_k^0{a^k} + C_k^1{a^{k - 1}}b + ... + C_k^{k - 1}a{b^{k - 1}} + C_k^k{b^k}} \right)b\\ = \left( {C_k^0{a^{k + 1}} + C_k^1{a^k}b + ... + C_k^{k - 1}{a^2}{b^{k - 1}} + C_k^ka{b^k}} \right) + \left( {C_k^0{a^k}b + C_k^1{a^{k - 1}}{b^2} + ... + C_k^{k - 1}a{b^k} + C_k^k{b^{k + 1}}} \right)\\ = C_k^0{a^{k + 1}} + \left( {C_k^1 + C_k^0} \right){a^k}b + ... + \left( {C_k^m + C_k^{m - 1}} \right){a^{k + 1 - m}}{b^m} + ... + \left( {C_k^k + C_k^{k - 1}} \right)a{b^k} + C_k^k{b^{k + 1}}\end{array}\)
Mà \(C_k^m + C_k^{m - 1} = C_{k + 1}^m\;(0 \le m \le k),\;C_k^0 = C_{k + 1}^0 = 1,C_k^k = C_{k + 1}^{k + 1} = 1\)
\( \Rightarrow {(a + b)^{k + 1}} = C_{k + 1}^0{a^{k + 1}} + C_{k + 1}^1{a^k}b + ... + C_{k + 1}^ka{b^k} + C_{k + 1}^{k + 1}{b^{k + 1}}\)
Vậy công thức đúng với mọi số tự nhiên \(n \ge 1\)
- Giải bài 6 trang 39 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 7 trang 39 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 8 trang 39 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 4 trang 39 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 3 trang 39 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 8 trang 66 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 7 trang 66 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 6 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 5 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 4 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 8 trang 66 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 7 trang 66 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 6 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 5 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo
- Giải bài 4 trang 65 Chuyên đề học tập Toán 10 – Chân trời sáng tạo