Giải bài 4.59 trang 69 sách bài tập toán 10 - Kết nối tri thức với cuộc sống


Cho hình bình hành \(ABCD\) tâm \(O\). Gọi \(M,\,\,N\) theo thứ tự là trung điểm của \(BC,\,\,AD.\) Gọi \(I,\,\,J\) lần lượt là giao điểm của \(BD\) với \(AM,\,\,CN.\) Xét các vecto khác \(\overrightarrow 0 ,\) có đầu mút lấy từ các điểm \(A,\,\,B,\,\,C,\,\,D,\,\,M,\,\,N,\,\,I,\,\,J,\,\,O.\)

Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

Đề bài

Cho hình bình hành \(ABCD\) tâm \(O\). Gọi \(M,\,\,N\) theo thứ tự là trung điểm của \(BC,\,\,AD.\) Gọi \(I,\,\,J\) lần lượt là giao điểm của \(BD\) với \(AM,\,\,CN.\) Xét các vecto khác \(\overrightarrow 0 ,\) có đầu mút lấy từ các điểm \(A,\,\,B,\,\,C,\,\,D,\,\,M,\,\,N,\,\,I,\,\,J,\,\,O.\)

a) Hãy chỉ ra những vectơ bằng vectơ \(\overrightarrow {AB} ;\) những vectơ cùng hướng với \(\overrightarrow {AB} .\)

b) Chứng minh ằng \(BI = IJ = JD.\)

Lời giải chi tiết

a) Các vectơ bằng vectơ \(\overrightarrow {AB} \) là: \(\overrightarrow {AB} ,\,\,\overrightarrow {NM} ,\,\,\overrightarrow {CD} \)

Các vectơ cùng hướng với \(\overrightarrow {AB} \) là: \(\overrightarrow {AB} ,\,\,\overrightarrow {NO} ,\,\,\overrightarrow {OM} ,\,\,\overrightarrow {CD} \)

b) Ta có: \(I\) là trọng tâm của \(\Delta ABC\)

\( \Rightarrow \) \(\overrightarrow {BI}  = \frac{2}{3}\overrightarrow {BO}  = \frac{2}{3}.\frac{1}{2}\overrightarrow {BD}  = \frac{1}{3}\overrightarrow {BD} \)      (1)

Ta có: \(J\) là trọng tâm của \(\Delta ACD\)

\( \Rightarrow \) \(\overrightarrow {JD}  = \frac{2}{3}\overrightarrow {OD}  = \frac{2}{3}.\frac{1}{2}\overrightarrow {BD}  = \frac{1}{3}\overrightarrow {BD} \)      (2)

Ta có: \(\overrightarrow {BD}  = \overrightarrow {BI}  + \overrightarrow {IJ}  + \overrightarrow {JD} \)

\( \Rightarrow \) \(\overrightarrow {IJ}  = \overrightarrow {BD}  - \overrightarrow {BI}  - \overrightarrow {JD}  = \overrightarrow {BD}  - \frac{1}{3}\overrightarrow {BD}  - \frac{1}{3}\overrightarrow {BD}  = \frac{1}{3}\overrightarrow {BD} \)      (3)

Từ (1), (2) và (3) \( \Rightarrow \) \(\overrightarrow {BI}  = \overrightarrow {IJ}  = \overrightarrow {JD} \) \( \Rightarrow \) \(BI = IJ = JD\)


Bình chọn:
3.5 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!