Giải bài 4 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2>
Cho biểu thức: (A = left( {frac{{sqrt x }}{{sqrt x + 2}} - frac{{sqrt x }}{{sqrt x - 2}} + frac{{4sqrt x - 1}}{{x - 4}}} right):frac{1}{{sqrt x + 2}};left( {x ge 0,x ne 4} right)). a) Rút gọn A. b) Tìm x sao cho (A = 1).
Tổng hợp đề thi học kì 1 lớp 9 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - KHTN - Lịch sử và Địa lí
Đề bài
Cho biểu thức: \(A = \left( {\frac{{\sqrt x }}{{\sqrt x + 2}} - \frac{{\sqrt x }}{{\sqrt x - 2}} + \frac{{4\sqrt x - 1}}{{x - 4}}} \right):\frac{1}{{\sqrt x + 2}}\;\left( {x \ge 0,x \ne 4} \right)\).
a) Rút gọn A.
b) Tìm x sao cho \(A = 1\).
Phương pháp giải - Xem chi tiết
a) Khi rút gọn biểu thức có chứa căn bậc hai, ta cần phối hợp các phép tính (cộng, trừ, nhân chia) và các phép biến đổi đã học (đưa thừa số ra ngoài hoặc vào trong dấu căn; khử mẫu của biểu thức lấy căn; trục căn thức ở mẫu).
b) Cho biểu thức rút gọn ở phần bằng 1; ta thu được phương trình, giải phương trình đó, đối chiếu với điều kiện của x và rút ra kết luận.
Lời giải chi tiết
a) \(A = \frac{{\sqrt x \left( {\sqrt x - 2} \right) - \sqrt x \left( {\sqrt x + 2} \right) + 4\sqrt x - 1}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}:\frac{1}{{\sqrt x + 2}}\)
\(A = \frac{{x - 2\sqrt x - x - 2\sqrt x + 4\sqrt x - 1}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}.\left( {\sqrt x + 2} \right)\)
\(A = \frac{{ - 1}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}.\left( {\sqrt x + 2} \right) = \frac{{ - 1}}{{\sqrt x - 2}}\)
Vậy \(A = \frac{{ - 1}}{{\sqrt x - 2}}\) với \(x \ge 0,x \ne 4\)
b) Để \(A = 1\) thì \(\frac{{ - 1}}{{\sqrt x - 2}} = 1\), suy ra \(\sqrt x - 2 = - 1\), suy ra \(\sqrt x = 1\), suy ra \(x = 1\) (thỏa mãn điều kiện).
Vậy \(x = 1\) thì \(A = 1\).
- Giải bài 5 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 6 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 7 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 8 trang 72 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 9 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Giải bài 18 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 17 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 16 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 15 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 14 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 18 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 17 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 16 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 15 trang 74 sách bài tập toán 9 - Kết nối tri thức tập 2
- Giải bài 14 trang 73 sách bài tập toán 9 - Kết nối tri thức tập 2