Giải Bài 3 trang 65 sách bài tập toán 7 - CTST>
Cho tam giác ABC có M là giao điểm của hai đường phân giác của góc B và góc C. Cho biết \(\widehat {BMC} = {132^o}\). Tính số đo các góc \(\widehat {MAB}\) và \(\widehat {MAC}\).
Tổng hợp đề thi học kì 1 lớp 7 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Khoa học tự nhiên...
Đề bài
Cho tam giác ABC có M là giao điểm của hai đường phân giác của góc B và góc C. Cho biết \(\widehat {BMC} = {132^o}\). Tính số đo các góc \(\widehat {MAB}\) và \(\widehat {MAC}\).
Phương pháp giải - Xem chi tiết
Sử dụng tính chất tia phân giác của các góc trong một tam giác để tính số đo góc cần tìm.
Lời giải chi tiết
Ta có \(\widehat {MBC} + \widehat {MCB} = {180^o} - \widehat {BMC} = {180^o} - {132^o} = {48^o}\)
Do BM và CM là phân giác các góc \(\widehat B\) và \(\widehat C\) của tam giác ABC nên ta có:
\(\widehat B + \widehat C = 2\left( {\widehat {MBC} + \widehat {MCB}} \right) = {2.48^o} = {96^o}\)
Suy ra: \(\widehat {{A^{}}} = {180^o} - \left( {\widehat B + \widehat C} \right) = {180^o} - {96^o} = {84^o}\)
Do AM là phân giác của góc A của tam giác ABC nên ta có:
\(\widehat {MAB} = \widehat {MAC} = \frac{{\widehat {{A^{}}}}}{2} = \frac{{{{84}^o}}}{2} = {42^o}\)
- Giải Bài 4 trang 65 sách bài tập toán 7 - CTST
- Giải Bài 5 trang 65 sách bài tập toán 7 - CTST
- Giải Bài 6 trang 65 sách bài tập toán 7 - CTST
- Giải Bài 7 trang 66 sách bài tập toán 7 - Chân trời sáng tạo
- Giải Bài 8 trang 66 sách bài tập toán 7 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 7 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Giải Bài 10 trang 88 sách bài tập toán 7 - Chân trời sáng tạo
- Giải Bài 8 trang 88 sách bài tập toán 7 - Chân trời sáng tạo
- Giải Bài 9 trang 88 sách bài tập toán 7 - Chân trời sáng tạo
- Giải Bài 7 trang 88 sách bài tập toán 7 - Chân trời sáng tạo
- Giải Bài 6 trang 87 sách bài tập toán 7 - Chân trời sáng tạo
- Giải Bài 10 trang 88 sách bài tập toán 7 - Chân trời sáng tạo
- Giải Bài 9 trang 88 sách bài tập toán 7 - Chân trời sáng tạo
- Giải Bài 8 trang 88 sách bài tập toán 7 - Chân trời sáng tạo
- Giải Bài 7 trang 88 sách bài tập toán 7 - Chân trời sáng tạo
- Giải Bài 6 trang 87 sách bài tập toán 7 - Chân trời sáng tạo