Giải bài 3 (9.9) trang 70 vở thực hành Toán 7 tập 2>
Cho tam giác ABC vuông tại A. Hai điểm M, N theo thứ tự nằm trên các cạnh AB, AC (M, N không phải là đỉnh của tam giác) (H.9.8). Chứng minh rằng (MN < BC). (Gợi ý. So sánh MN với NB, NB với BC).
Đề bài
Cho tam giác ABC vuông tại A. Hai điểm M, N theo thứ tự nằm trên các cạnh AB, AC (M, N không phải là đỉnh của tam giác) (H.9.8). Chứng minh rằng \(MN < BC\). (Gợi ý. So sánh MN với NB, NB với BC).
Phương pháp giải - Xem chi tiết
+ Chứng minh \(\widehat {AMN}\) là góc nhọn, suy ra \(\widehat {NMB}\) là góc tù, suy ra \(MN < NB\).
+ Chứng minh tương tự ta có \(NB < BC\). Từ đó suy ra \(MN < BC\).
Lời giải chi tiết
Tam giác NAM vuông tại A nên \(\widehat {AMN}\) là góc nhọn, suy ra \(\widehat {NMB} = {180^o} - \widehat {AMN}\) là góc tù. Trong tam giác NMB, góc NMB là góc tù nên \(MN < NB\). (1)
Tương tự, tam giác ABN vuông tại A nên \(\widehat {BNA}\) là góc nhọn; suy ra \(\widehat {BNC}\) là góc tù. Trong tam giác BCN, góc BNC là góc tù nên \(NB < BC\). (2)
Từ (1) và (2) suy ra \(MN < BC\).
Luyện Bài Tập Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay