Giải bài 25 trang 57 sách bài tập toán 12 - Cánh diều


Đường thẳng (Delta ) có phương trình chính tắc là: (frac{{x + 1}}{{ - 7}} = frac{{y + 3}}{{ - 8}} = frac{{z - 2}}{1}). Phương trình tham số của (Delta ) là: A. (left{ begin{array}{l}x = 1 - 7t\y = 3 - 8t\z = - 2 + tend{array} right.). B. (left{ begin{array}{l}x = - 1 + 7t\y = - 3 + 8t\z = 2 + tend{array} right.). C. (left{ begin{array}{l}x = - 1 - 7t\y = 3 - 8t\z = 2 + tend{array} right.). D. (left{ begin{array}{l}x = - 1 - 7t\y = - 3 - 8t\z =

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Đường thẳng \(\Delta \) có phương trình chính tắc là: \(\frac{{x + 1}}{{ - 7}} = \frac{{y + 3}}{{ - 8}} = \frac{{z - 2}}{1}\). Phương trình tham số của \(\Delta \) là:

A. \(\left\{ \begin{array}{l}x = 1 - 7t\\y = 3 - 8t\\z =  - 2 + t\end{array} \right.\).

B. \(\left\{ \begin{array}{l}x =  - 1 + 7t\\y =  - 3 + 8t\\z = 2 + t\end{array} \right.\).

C. \(\left\{ \begin{array}{l}x =  - 1 - 7t\\y = 3 - 8t\\z = 2 + t\end{array} \right.\).

D. \(\left\{ \begin{array}{l}x =  - 1 - 7t\\y =  - 3 - 8t\\z = 2 + t\end{array} \right.\).

Phương pháp giải - Xem chi tiết

Phương trình tham số của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( {a;b;c} \right)\) là: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\).

Lời giải chi tiết

Đường thẳng \(\Delta \) có phương trình chính tắc là: \(\frac{{x + 1}}{{ - 7}} = \frac{{y + 3}}{{ - 8}} = \frac{{z - 2}}{1}\) đi qua điểm \(M\left( { - 1; - 3;2} \right)\) và có vectơ chỉ phương \(\overrightarrow u  = \left( { - 7; - 8;1} \right)\). Phương trình tham số của \(\Delta \) là: \(\left\{ \begin{array}{l}x =  - 1 - 7t\\y =  - 3 - 8t\\z = 2 + t\end{array} \right.\).

Chọn D.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 26 trang 57 sách bài tập toán 12 - Cánh diều

    Đường thẳng (Delta ) có phương trình tham số là: (left{ begin{array}{l}x = - 2 - 21t\y = 3 + 5t\z = - 6 - 19tend{array} right.). Phương trình chính tắc của (Delta ) là: A. (frac{{x + 21}}{{ - 2}} = frac{{y - 5}}{3} = frac{{z + 19}}{{ - 6}}). B. (frac{{x + 2}}{{ - 21}} = frac{{y - 3}}{5} = frac{{z + 6}}{{ - 19}}). C. (frac{{x + 2}}{{21}} = frac{{y - 3}}{5} = frac{{z + 6}}{{19}}). D. (frac{{x - 2}}{{ - 21}} = frac{{y + 3}}{5} = frac{{z - 6}}{{ - 19}}).

  • Giải bài 27 trang 57 sách bài tập toán 12 - Cánh diều

    Đường thẳng đi qua điểm (Mleft( {{x_0};{y_0};{z_0}} right)) và vuông góc với mặt phẳng (left( {Oxy} right)) có phương trình tham số là: A. (left{ begin{array}{l}x = {x_0}\y = {y_0}\z = tend{array} right.). B. (left{ begin{array}{l}x = t\y = {y_0}\z = {z_0}end{array} right.). C. (left{ begin{array}{l}x = {x_0}\y = t\z = {z_0}end{array} right.). D. (left{ begin{array}{l}x = {x_0} + t\y = {y_0} + t\z = {z_0} + tend{array} right.).

  • Giải bài 28 trang 57 sách bài tập toán 12 - Cánh diều

    Cho đường thẳng (Delta ) có phương trình tham số (left{ begin{array}{l}x = at\y = bt\z = ctend{array} right.) với ({a^2} + {b^2} + {c^2} > 0). Côsin của góc giữa đường thẳng (Delta ) và trục (Oz) bằng: A. (frac{c}{{sqrt {{a^2} + {b^2} + {c^2}} }}). B. (frac{{left| a right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}). C. (frac{{left| b right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}). D. (frac{{left| c right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}).

  • Giải bài 29 trang 58 sách bài tập toán 12 - Cánh diều

    Cho đường thẳng (Delta ) có phương trình tham số (left{ begin{array}{l}x = at\y = bt\z = ctend{array} right.) với ({a^2} + {b^2} + {c^2} > 0). Sin của góc giữa đường thẳng (Delta ) và mặt phẳng (left( {Oyz} right)) bằng: A. (frac{{left| {a + b + c} right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}). B. (frac{{left| a right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}). C. (frac{{left| b right|}}{{sqrt {{a^2} + {b^2} + {c^2}} }}). D. (frac{{left| c right|}}{{sqrt {{a

  • Giải bài 30 trang 58 sách bài tập toán 12 - Cánh diều

    Cho (a,b) và (c) khác 0, côsin của góc giữa hai mặt phẳng (left( P right):ax + by + c = 0) và (left( Q right):by + cz + d = 0) bằng: A. (frac{{{b^2}}}{{sqrt {left( {{a^2} + {b^2} + {c^2}} right)left( {{b^2} + {c^2} + {d^2}} right)} }}). B. (frac{{left| b right|}}{{sqrt {left( {{a^2} + {b^2}} right)left( {{b^2} + {c^2}} right)} }}). C. (frac{{left| b right|}}{{sqrt {left( {{a^2} + {b^2} + {c^2}} right)left( {{b^2} + {c^2} + {d^2}} right)} }}). D. (frac{

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí