Giải bài 18 trang 75 sách bài tập toán 11 - Cánh diều>
Cho \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 4\), chứng minh rằng:
Đề bài
Cho \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 4\), chứng minh rằng:
a) \(\mathop {\lim }\limits_{x \to 3} 3f\left( x \right) = 12\)
b) \(\mathop {\lim }\limits_{x \to 3} \frac{{f\left( x \right)}}{4} = 1\)
c) \(\mathop {\lim }\limits_{x \to 3} \sqrt {f\left( x \right)} = 2\)
Phương pháp giải - Xem chi tiết
Sử dụng định lí về các phép toán giới hạn hữu hạn của hàm số.
Lời giải chi tiết
Định lí về các phép toán trên giới hạn hữu hạn của hàm số: Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\) thì
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\), \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right] = L - M\)
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\), \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) nếu \(M \ne 0\).
a) Ta có \(\mathop {\lim }\limits_{x \to 3} 3f\left( x \right) = \mathop {\lim }\limits_{x \to 3} 3.\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 3.4 = 12\).
b) Ta có \(\mathop {\lim }\limits_{x \to 3} \frac{{f\left( x \right)}}{4} = \frac{{\mathop {\lim }\limits_{x \to 3} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 3} 4}} = \frac{4}{4} = 1\).
c) Ta có \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 4 \ge 0\) nên \(\mathop {\lim }\limits_{x \to 3} \sqrt {f\left( x \right)} = \sqrt 4 = 2\)
- Giải bài 19 trang 76 sách bài tập toán 11 - Cánh diều
- Giải bài 20 trang 76 sách bài tập toán 11 - Cánh diều
- Giải bài 21 trang 76 sách bài tập toán 11 - Cánh diều
- Giải bài 22 trang 76 sách bài tập toán 11 - Cánh diều
- Giải bài 23 trang 76 sách bài tập toán 11 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục