Giải bài 12 trang 74 sách bài tập toán 11 - Cánh diều>
Giả sử \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\) \(\left( {L,M \in \mathbb{R}} \right)\).
Đề bài
Giả sử \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\) \(\left( {L,M \in \mathbb{R}} \right)\). Phát biểu nào sau đây là SAI?
A. \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\)
B. \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right] = L - M\)
C. \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\)
D. \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\)
Phương pháp giải - Xem chi tiết
Sử dụng định lí về các phép toán trên giới hạn hữu hạn của hàm số
Lời giải chi tiết
Định lí về các phép toán trên giới hạn hữu hạn của hàm số: Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\) thì
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\), \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right] = L - M\)
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\), \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) nếu \(M \ne 0\).
Ta nhận thấy các đáp án A, B, C đều đúng so với định lí này, riêng đáp án D còn thiếu điều kiện \(M \ne 0\).
Vậy đáp án cần chọn là đáp án D.
- Giải bài 13 trang 74 sách bài tập toán 11 - Cánh diều
- Giải bài 14 trang 75 sách bài tập toán 11 - Cánh diều
- Giải bài 15 trang 75 sách bài tập toán 11 - Cánh diều
- Giải bài 16 trang 75 sách bài tập toán 11 - Cánh diều
- Giải bài 17 trang 75 sách bài tập toán 11 - Cánh diều
>> Xem thêm
Các bài khác cùng chuyên mục