Giải bài 1.19 trang 20 SGK Toán 10 tập 1 – Kết nối tri thức>
Mệnh đề nào sau đây là đúng?
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Mệnh đề nào sau đây là đúng?
A. \(\forall x \in \mathbb{R},{x^2} > 1 \Rightarrow x > - 1\)
B. \(\forall x \in \mathbb{R},{x^2} > 1 \Rightarrow x > 1\)
C. \(\forall x \in \mathbb{R},x > - 1 \Rightarrow {x^2} > 1\)
D. \(\forall x \in \mathbb{R},x > 1 \Rightarrow {x^2} > 1\)
Lời giải chi tiết
A. \(\forall x \in \mathbb{R},{x^2} > 1 \Rightarrow x > - 1\)
Sai, chẳng hạn với \(x = - 2\) thì \({x^2} = 4 > 1\) nhưng \(x = - 2 < - 1\).
B. \(\forall x \in \mathbb{R},{x^2} > 1 \Rightarrow x > 1\)
Sai, chẳng hạn với \(x = - 2\) thì \({x^2} = 4 > 1\) nhưng \(x = - 2 < 1\).
C. \(\forall x \in \mathbb{R},x > - 1 \Rightarrow {x^2} > 1\)
Sai, chẳng hạn với \(x = 0 > - 1\) nhưng \({x^2} = 0 < 1\)
D. \(\forall x \in \mathbb{R},x > 1 \Rightarrow {x^2} > 1\)
Đúng.
Chọn đáp án D
- Giải bài 1.20 trang 20 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 1.21 trang 20 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 1.22 trang 20 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 1.23 trang 20 SGK Toán 10 tập 1 – Kết nối tri thức
- Giải bài 1.24 trang 21 SGK Toán 10 tập 1 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Ba đường conic - SGK Toán 10 Kết nối tri thức
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Kết nối tri thức
- Lý thuyết Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách - SGK Toán 10 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Kết nối tri thức
- Lý thuyết Phương trình quy về phương trình bậc hai - SGK Toán 10 Kết nối tri thức
- Lý thuyết Ba đường conic - SGK Toán 10 Kết nối tri thức
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Kết nối tri thức
- Lý thuyết Vị trí tương đối giữa hai đường thẳng. Góc và khoảng cách - SGK Toán 10 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Kết nối tri thức
- Lý thuyết Phương trình quy về phương trình bậc hai - SGK Toán 10 Kết nối tri thức