Giải bài 1 trang 46 sách bài tập toán 12 - Cánh diều


Phương trình nào sau đây là phương trình tổng quát của mặt phẳng? A. (x - {y^2} - 2 = 0). B. (x + {z^2} - 3 = 0). C. (x - z - 4 = 0). D. ({x^2} + {y^2} + {z^2} - 1 = 0).

Đề bài

Phương trình nào sau đây là phương trình tổng quát của mặt phẳng?

A. \(x - {y^2} - 2 = 0\).

B. \(x + {z^2} - 3 = 0\).

C. \(x - z - 4 = 0\).

D. \({x^2} + {y^2} + {z^2} - 1 = 0\).

Phương pháp giải - Xem chi tiết

Sử dụng khái niệm phương trình tổng quát của mặt phẳng: Phương trình \(Ax + By + C{\rm{z}} + D = 0\) (\(A,B,C\) không đồng thời bằng 0) là phương trình tổng quát của mặt phẳng.

Lời giải chi tiết

Phương trình \(x - z - 4 = 0\) là phương trình tổng quát của mặt phẳng.

Chọn C.


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 2 trang 46 sách bài tập toán 12 - Cánh diều

    Cho mặt phẳng (left( P right): - x + 2y + 3 = 0). Vectơ nào sau đây là vectơ pháp tuyến của mặt phẳng (left( P right))? A. (overrightarrow {{n_1}} = left( { - 1;2;3} right)). B. (overrightarrow {{n_2}} = left( {1;2;3} right)). C. (overrightarrow {{n_3}} = left( { - 1;2;0} right)). D. (overrightarrow {{n_4}} = left( { - x;2y;3} right)).

  • Giải bài 3 trang 46 sách bài tập toán 12 - Cánh diều

    Cho mặt phẳng (left( P right):3x - 6y + 12z - 13 = 0). Vectơ nào sau đây là vectơ pháp tuyến của mặt phẳng (left( P right))? A. (overrightarrow {{n_1}} = left( {3;6;12} right)). B. (overrightarrow {{n_2}} = left( {3x;6y;12z} right)). C. (overrightarrow {{n_3}} = left( {3x; - 6y;12z} right)). D. (overrightarrow {{n_4}} = left( { - 1;2; - 4} right)).

  • Giải bài 4 trang 46 sách bài tập toán 12 - Cánh diều

    Cho mặt phẳng (left( P right):3x + 4y - z + 5 = 0). Vectơ nào sau đây là vectơ pháp tuyến của mặt phẳng (left( P right))? A. (overrightarrow {{n_1}} = left( {3;4;1} right)). B. (overrightarrow {{n_2}} = left( {3;4; - 1} right)). C. (overrightarrow {{n_3}} = left( {3;4;5} right)). D. (overrightarrow {{n_4}} = left( {3;4; - 5} right)).

  • Giải bài 5 trang 46 sách bài tập toán 12 - Cánh diều

    Mặt phẳng đi qua điểm (Mleft( {{x_0};{y_0};{z_0}} right)) và vuông góc với (Ox) có phương trình là: A. (x - {x_0} = 0). B. (y - {y_0} = 0). C. (z - {z_0} = 0). D. (x + y + z - {x_0} - {y_0} - {z_0} = 0).

  • Giải bài 6 trang 47 sách bài tập toán 12 - Cánh diều

    Khoảng cách từ điểm (Mleft( {{x_0};{y_0};{z_0}} right)) đến mặt phẳng (left( {Oxy} right)) bằng: A. (left| {{x_0}} right|). B. (left| {{y_0}} right|). C. (left| {{z_0}} right|). D. (left| {{x_0} + {y_0} + {z_0}} right|).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Cánh diều - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí