Giải bài 1 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo>
Xác định tính đúng sai của mỗi mệnh đề sau:
Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Xác định tính đúng sai của mỗi mệnh đề sau:
a) \(\{ a\} \in \{ a;b;c;d\} \)
b) \(\emptyset = \{ 0\} \)
c) \(\{ a;b;c;d\} \in \{ b;a;d;c\} \)
d) \(\{ a;b;c\} \not \subset \{ a;b;c\} \)
Phương pháp giải - Xem chi tiết
Mệnh đề là những câu, phát biểu đúng hoặc sai, không thể vừa đúng vừa sai.
Lời giải chi tiết
a) \(\{ a\} \in \{ a;b;c;d\} \) là mệnh đề sai, vì không có quan hệ \( \in \) giữa hai tập hợp.
b) \(\emptyset = \{ 0\} \) là mệnh đề sai, vì tập rỗng là tập không có phần tử nào, còn tập {0} có một phần tử là 0.
c) \(\{ a;b;c;d\} = \{ b;a;d;c\} \) là mệnh đề đúng (có thể thay đổi tùy ý vị trí các phần tử trong một tập hợp).
d) \(\{ a;b;c\} \not \subset \{ a;b;c\} \) là mệnh đề sai, vì mỗi phần tử a,b,c đều thuộc tập hợp \(\{ a;b;c\} \).
- Giải bài 2 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 3 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 4 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 5 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo
- Giải bài 6 trang 27 SGK Toán 10 tập 1 – Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Nhị thức Newton - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Quy tắc cộng và quy tắc nhân - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Phương trình quy về phương trình bậc hai - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Giải bất phương trình bậc hai một ẩn - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Nhị thức Newton - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Quy tắc cộng và quy tắc nhân - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Phương trình quy về phương trình bậc hai - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Giải bất phương trình bậc hai một ẩn - SGK Toán 10 Chân trời sáng tạo