 Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                         Ôn tập chương I
                                                        Ôn tập chương I
                                                    Câu 8 trang 35 SGK Hình học 11 Nâng cao >
Cho đường tròn (O) có đường kính AB.
Đề bài
Cho đường tròn (O) có đường kính AB. Gọi C là điểm đối xứng với A và B và PQ là đường kính thay đổi của (O) khác đường kính AB. Đường thẳng CQ cắt PA và PB lần lượt tại M và N
a. Chứng minh rằng Q là trung điểm của CM, N là trung điểm của CQ.
b. Tìm quỹ tích các điểm M và N khi đường kính PQ thay đổi
Lời giải chi tiết

a. Ta có QB // AP (vì cùng vuông góc với PB) và B là trung điểm của AC nên Q là trung điểm của CM
Ta có AQ // BN (vì cùng vuông góc với AP) và B là trung điểm của AC nên N là trung điểm của CQ
b. Theo câu a) ta có \(\overrightarrow {CM} = 2\overrightarrow {CQ} \) nên phép vị tự V tâm C tỉ số 2 biến Q thành M
Vì Q chạy trên đường tròn (O) (trừ hai điểm A, B) nên quỹ tích M là ảnh của đường tròn đó qua phép vị tự V tâm C tỉ số 2 (trừ ảnh của A, B)
Tương tự, ta có \(\overrightarrow {CN} = {1 \over 2}\overrightarrow {CQ} \) nên quỹ tích N là ảnh của đường tròn (O) qua phép vị tự V tâm C, tỉ số \({1 \over 2}\) (trừ ảnh của A, B)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            