Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 8. Hàm số liên tục
Câu 53 trang 176 SGK Đại số và Giải tích 11 Nâng cao>
Chứng minh rằng
Đề bài
Chứng minh rằng phương trình \({x^3} + x + 1 = 0\) có ít nhất một nghiệm âm lớn hơn -1.
Phương pháp giải - Xem chi tiết
Sử dụng định lý: Nếu hàm số f(x) liên tục trên đoạn [a;b] và \(f(a).f(b)<0\) thì tồn tại ít nhất một điểm c∈(a;b) sao cho f(c)=0.
Lời giải chi tiết
Hàm số \(f\left( x \right) = {x^3} + x + 1\) liên tục trên đoạn [-1 ; 0] có \(f(-1) = -1\) và \(f(0) = 1\).
Vì \(f(-1)f(0) < 0\) nên theo hệ quả của định lí về giá trị trung gian của hàm số liên tục, tồn tại ít nhất một điểm \(c \in (-1 ; 0)\) sao cho \(f(c) = 0\). Số c là nghiệm âm lớn hơn -1 của phương trình đã cho.
Loigiaihay.com




