 Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                         Bài 8. Hàm số liên tục
                                                        Bài 8. Hàm số liên tục
                                                    Câu 50 trang 175 SGK Đại số và Giải tích 11 Nâng cao>
Chứng minh rằng :
Chứng minh rằng :
LG a
Hàm số
\(f\left( x \right) = \left\{ {\matrix{{{{\left( {x + 1} \right)}^2}\,\text{ với }\,x \le 0} \cr {{x^2} + 2\,\text{ với }\,x > 0} \cr} } \right.\)
Gián đoạn tại điểm x = 0
Phương pháp giải:
Tính các giới hạn trái, giới hạn phải của hàm số tại x=0 suy ra kết luận.
Lời giải chi tiết:
Ta có:
\(\eqalign{
& \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} \left( {{x^2} + 2} \right) = 2 \cr 
& \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {0^ - }} {\left( {x + 1} \right)^2} = 1 \cr} \)
\( \Rightarrow \mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {0^ - }} f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 0} f\left( x \right)\).
Vậy hàm số f gián đoạn tại \(x = 0\)
LG b
Mỗi hàm số
\(g\left( x \right) = \sqrt {x - 3} \) \(\text{ và }\,h\left( x \right) = \left\{ {\matrix{{{1 \over {x - 2}}\,\text{ với }\,x \le 1} \cr { - {1 \over x}\,\text{ với }\,x > 1} \cr} } \right.\)
liên tục trên tập xác định của nó.
Phương pháp giải:
Xét tính liên tục của mỗi hàm số trên các khoảng và tại điểm quan trọng.
Chú ý: Hàm phân thức liên tục trên TXĐ.
Hàm số f(x) liên tục tại điểm \(x_0\) \( \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)
Lời giải chi tiết:
Tập xác định của hàm số \(g\left( x \right) = \sqrt {x - 3} \) là \(\left[ {3; + \infty } \right)\)
Với x0> 3 ta có \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \sqrt {x - 3} \) \(= \sqrt {{x_0} - 3} = g\left( {{x_0}} \right)\)
Nên g liên tục trên khoảng \(\left( {3; + \infty } \right),\) ngoài ra :
\(\mathop {\lim }\limits_{x \to {3^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \sqrt {x - 3} \) \(= 0 = g\left( 3 \right)\)
Vậy g liên tục trên \(\left[ {3; + \infty } \right)\)
*Tập xác định của hàm số
\(h\left( x \right) = \left\{ {\matrix{{{1 \over {x - 2}}\,\text{ với }\,x \le 1} \cr { - {1 \over x}\,\text{ với }\,x > 1} \cr} \,\text{ là }\,\mathbb R} \right.\)
Rõ ràng h liên tục trên \((-∞; 1)\) và trên \((1 ; +∞)\) (Vì trên các khoảng này h là hàm phân thức)
Tại x0 = 1 ta có :
\(\eqalign{
& \mathop {\lim }\limits_{x \to {1^ - }} h\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} {1 \over {x - 2}} = - 1;\cr &\mathop {\lim }\limits_{x \to {1^ + }} h\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} {{ - 1} \over x} = - 1 \cr 
& \Rightarrow \mathop {\lim }\limits_{x \to {1^ - }} h\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} h\left( x \right) =\mathop {\lim }\limits_{x \to 1} h\left( x \right) \cr} \)
Mà h(1)=-1 nên \(\mathop {\lim }\limits_{x \to 1} h\left( x \right)=h(1)\) hay h(x) liên tục tại x=1.
Vậy h liên tục trên \(\mathbb R\).
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            