 Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                         Bài 8. Hàm số liên tục
                                                        Bài 8. Hàm số liên tục
                                                    Câu 47 trang 172 SGK Đại số và Giải tích 11 Nâng cao>
Chứng minh rằng :
Chứng minh rằng :
LG a
Hàm số \(f\left( x \right) = {x^4} - {x^2} + 2\) liên tục trên \(\mathbb R\)
Lời giải chi tiết:
Hàm số \(f\left( x \right) = {x^4} - {x^2} + 2\) xác định trên \(\mathbb R\).
Với mọi \(x_0\in\mathbb R\) ta có:
\(\mathop {\lim }\limits_{x \to {x_0}}f(x) = \mathop {\lim }\limits_{x \to {x_0}} \left( {{x^4} - {x^2} + 2} \right) \) \(= x_0^4 - x_0^2 + 2 = f\left( {{x_0}} \right)\)
Vậy f liên tục tại x0 nên f liên tục trên \(\mathbb R\).
LG b
Hàm số \(f\left( x \right) = {1 \over {\sqrt {1 - {x^2}} }}\) liên tục trên khoảng (-1 ; 1) ;
Lời giải chi tiết:
Hàm số f xác định khi và chỉ khi :
\(1 - {x^2} > 0 \Leftrightarrow - 1 < x < 1\)
Vậy hàm số f xác định trên khoảng (-1 ; 1)
Với mọi x0ϵ (-1 ; 1), ta có : \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} {1 \over {\sqrt {1 - {x^2}} }} \) \(= {1 \over {\sqrt {1 - x_0^2} }} = f\left( {{x_0}} \right)\)
Vậy hàm số f liên tục tại điểm x0. Do đó f liên tục trên khoảng (-1 ; 1)
LG c
Hàm số \(f\left( x \right) = \sqrt {8 - 2{x^2}} \) liên tục trên đoạn [-2 ; 2];
Lời giải chi tiết:
ĐKXĐ: \(8 - 2{x^2} \ge 0 \Leftrightarrow {x^2} \le 4 \Leftrightarrow - 2 \le x \le 2\)
Hàm số \(f\left( x \right) = \sqrt {8 - 2{x^2}} \) xác định trên đoạn [-2 ; 2]
Với mọi \({x_0} \in \left( { - 2;2} \right)\) , ta có: \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \sqrt {8 - 2x_0^2} = f\left( {{x_0}} \right)\)
Vậy hàm số f liên tục trên khoảng (-2 ; 2).
Ngoài ra, ta có :
\(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} f\left( x \right) \) \(= \sqrt {8 - 2{{\left( { - 2} \right)}^2}} = 0 = f\left( { - 2} \right)\) nên hàm số liên tục phải tại x=-2.
\(\mathop {\lim }\limits_{x \to {{\left( { 2} \right)}^ - }}\) \( = \sqrt {8 - {{2.2}^2}} = 0 = f\left( 2 \right)\) nên hàm số liên tục trái tại x=2.
Do đó hàm số f liên tục trên đoạn [-2 ; 2]
LG d
Hàm số \(f\left( x \right) = \sqrt {2x - 1} \) liên tục trên nửa khoảng \(\left[ {{1 \over 2}; + \infty } \right)\)
Lời giải chi tiết:
Hàm số \(f\left( x \right) = \sqrt {2x - 1} \) xác định trên nửa khoảng \(\left[ {{1 \over 2}; + \infty } \right)\)
Với \({x_0} \in \left( {{1 \over 2}; + \infty } \right)\) ta có \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = \mathop {\lim }\limits_{x \to {x_0}} \sqrt {2x - 1} \) \(= \sqrt {2{x_0} - 1} = f\left( {{x_0}} \right)\)
Nên hàm số liên tục trên khoảng \(\left( {{1 \over 2}; + \infty } \right)\)
Mặt khác ta có \(\mathop {\lim }\limits_{x \to {{{1 \over 2}}^ + }} f\left( x \right) \) \(= \mathop {\lim }\limits_{x \to {{{1 \over 2}}^ + }} \sqrt {2x - 1} = 0 = f\left( {{1 \over 2}} \right)\)
Nên hàm số liên tục phải tại x=1/2.
Do đó hàm số f liên tục trên nửa khoảng \(\left[ {{1 \over 2}; + \infty } \right)\)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            