Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 4. Cấp số nhân
Câu 39 trang 122 SGK Đại số và Giải tích 11 Nâng cao>
Các số x + 6y, 5x + 2y, 8x + y
Đề bài
Các số \(x + 6y, 5x + 2y, 8x + y\) theo thứ tự đó lập thành một cấp số cộng; đồng thời, các số \(x – 1, y + 2, x – 3y\) theo thứ tự đó lập thành một cấp số nhân. Hãy tìm x và y.
Phương pháp giải - Xem chi tiết
Sử dụng tính chất CSC: \[{u_{k + 1}} + {u_{k - 1}} = 2{u_k}\]
Tính chất CSN: \[{u_{k + 1}}.{u_{k - 1}} = u_k^2\]
- Lập hệ phương trình ẩn x, y.
- Giải hệ và kết luận.
Lời giải chi tiết
Vì các số \(x + 6y, 5x + 2y, 8x + y\) theo thứ tự đó lập thành một cấp số cộng nên :
\(2\left( {5x + 2y} \right) = \left( {x + 6y} \right) + \left( {8x + y} \right)\)
\( \Leftrightarrow 10x + 4y = 9x + 7y\)
\(\Leftrightarrow x = 3y\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right)\)
Vì các số \(x – 1, y + 2, x – 3y\) theo thứ tự đó lập thành một cấp số nhân nên :
\({\left( {y + 2} \right)^2} = \left( {x - 1} \right)\left( {x - 3y} \right)\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\)
Thế (1) vào (2), ta được:
\({\left( {y + 2} \right)^2} = \left( {3y - 1} \right)\left( {3y - 3} \right)\)
\( \Leftrightarrow {\left( {y + 2} \right)^2} = 0 \Leftrightarrow y = - 2.\)
Từ đó \(x = -6\).
Loigiaihay.com




