Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 3. Dãy số có giới hạn vô cực
Câu 14 trang 142 SGK Đại số và Giải tích 11 Nâng cao>
Chứng minh rằng
Đề bài
Chứng minh rằng nếu \(q > 1\) thì \(\lim {q^n} = + \infty .\)
Phương pháp giải - Xem chi tiết
Đặt \(q' = \dfrac{1}{q} \Rightarrow q = \dfrac{1}{{q'}}\) và tính giới hạn \(\lim q^n\).
Chú ý: \(\lim {\left( {q'} \right)^n} = 0\) khi \(0<q'<1\).
Lời giải chi tiết
Đặt \(q' = \dfrac{1}{q} \Rightarrow q = \dfrac{1}{{q'}}\).
Do \(q > 1 \Rightarrow 0 < q' < 1\) \( \Rightarrow \lim {\left( {q'} \right)^n} = 0\)
\( \Rightarrow \lim {q^n} = \lim {\left( {\dfrac{1}{{q'}}} \right)^n} = \lim \dfrac{1}{{{{\left( {q'} \right)}^n}}}\)
Vì \(1 > 0\) và \(\left\{ \begin{array}{l}\lim {\left( {q'} \right)^n} = 0\\{\left( {q'} \right)^n} > 0\end{array} \right.\) nên \(\lim {q^n} = + \infty \).
Loigiaihay.com




