 Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                         Bài 3. Dãy số có giới hạn vô cực
                                                        Bài 3. Dãy số có giới hạn vô cực
                                                    Câu 14 trang 142 SGK Đại số và Giải tích 11 Nâng cao>
Chứng minh rằng
Đề bài
Chứng minh rằng nếu \(q > 1\) thì \(\lim {q^n} = + \infty .\)
Phương pháp giải - Xem chi tiết
Đặt \(q' = \dfrac{1}{q} \Rightarrow q = \dfrac{1}{{q'}}\) và tính giới hạn \(\lim q^n\).
Chú ý: \(\lim {\left( {q'} \right)^n} = 0\) khi \(0<q'<1\).
Lời giải chi tiết
Đặt \(q' = \dfrac{1}{q} \Rightarrow q = \dfrac{1}{{q'}}\).
Do \(q > 1 \Rightarrow 0 < q' < 1\) \( \Rightarrow \lim {\left( {q'} \right)^n} = 0\)
\( \Rightarrow \lim {q^n} = \lim {\left( {\dfrac{1}{{q'}}} \right)^n} = \lim \dfrac{1}{{{{\left( {q'} \right)}^n}}}\)
Vì \(1 > 0\) và \(\left\{ \begin{array}{l}\lim {\left( {q'} \right)^n} = 0\\{\left( {q'} \right)^n} > 0\end{array} \right.\) nên \(\lim {q^n} = + \infty \).
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            