 Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                         Bài 3. Dãy số có giới hạn vô cực
                                                        Bài 3. Dãy số có giới hạn vô cực
                                                    Câu 13 trang 142 SGK Đại số và Giải tích 11 Nâng cao>
Tìm các giới hạn sau :
Tìm các giới hạn sau :
LG a
\(\lim \left( {2n + \cos n} \right)\)
Phương pháp giải:
Đặt n ra làm nhân tử chung rồi tính giới hạn.
Lời giải chi tiết:
Ta có:
\(\eqalign{
& 2n + \cos n = n\left( {2 + {{\cos n} \over n}} \right) \cr 
& \left| {{{\cos n} \over n}} \right| \le {1 \over n},\lim {1 \over n} = 0 \cr &\Rightarrow \lim {{\cos n} \over n} = 0 \cr} \)
Do đó \(\lim \left( {2 + {{\cos n} \over n}} \right) = 2 > 0\) và \(\lim n = + \infty \)
Suy ra \(\lim \left( {2n + \cos n} \right) = + \infty \)
LG b
\(\lim \left( {{1 \over 2}{n^2} - 3\sin 2n + 5} \right)\)
Phương pháp giải:
Đặt \(n^2\) ra làm nhân tử chung tính giới hạn.
Lời giải chi tiết:
\(\eqalign{
& \lim \left( {{1 \over 2}{n^2} - 3\sin 2n + 5} \right) \cr &= \lim {n^2}\left( {{1 \over 2} - {{3\sin 2n} \over n^2} + {5 \over {{n^2}}}} \right) = + \infty \cr 
& \text{ Vì }\,\lim {n^2} = + \infty \cr &\text{ và }\,\lim \left( {{1 \over 2} - {{3\sin 2n} \over n^2} + {5 \over {{n^2}}}} \right) = {1 \over 2} > 0 \cr} \)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            