 Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
                         Bài 3. Dãy số có giới hạn vô cực
                                                        Bài 3. Dãy số có giới hạn vô cực
                                                    Câu 12 trang 142 SGK Đại số và Giải tích 11 Nâng cao>
Tìm giới hạn của các dãy số (un) với
Tìm giới hạn của các dãy số (un) với
LG a
\({u_n} = {{ - 2{n^3} + 3n - 2} \over {3n - 2}}\)
Phương pháp giải:
Chia cả tử và mẫu của biểu thức cần tính giới hạn cho lũy thừa bậc cao nhất của n.
Lời giải chi tiết:
Ta có:
\(\displaystyle {u_n} = {{{n^3}\left( { - 2 + {3 \over {{n^2}}} - {2 \over {{n^3}}}} \right)} \over {{n^3}\left( {{3 \over {{n^2}}} - {2 \over {{n^3}}}} \right)}} \) \(\displaystyle = {{ - 2 + {3 \over {{n^2}}} - {2 \over {{n^3}}}} \over {{3 \over {{n^2}}} - {2 \over {{n^3}}}}}\)
Vì \(\displaystyle \lim \left( { - 2 + {3 \over {{n^2}}} - {2 \over {{n^2}}}} \right) = - 2 < 0\)
Và \(\displaystyle \lim \left( {{3 \over {{n^2}}} - {2 \over {{n^3}}}} \right) = 0;\)
Nên \(\displaystyle \lim {u_n} = - \infty \)
LG b
\({u_n} = {{\root 3 \of {{n^6} - 7{n^3} - 5n + 8} } \over {n + 12}}\)
Lời giải chi tiết:
Chia tử và mẫu của phân thức cho n, ta được :
\({u_n} = \dfrac{{\dfrac{{\sqrt[3]{{{n^6} - 7{n^3} - 5n + 8}}}}{n}}}{{\dfrac{{n + 12}}{n}}} \) \(= \dfrac{{\sqrt[3]{{\dfrac{{{n^6} - 7{n^3} - 5n + 8}}{{{n^3}}}}}}}{{1 + \dfrac{{12}}{n}}} \) \(= \dfrac{{\sqrt[3]{{{n^3} - 7 - \dfrac{5}{{{n^2}}} + \dfrac{8}{{{n^3}}}}}}}{{1 + \dfrac{{12}}{n}}} \) \( = \dfrac{{\sqrt[3]{{{n^3}\left( {1 - \dfrac{7}{{{n^3}}} - \dfrac{5}{{{n^5}}} + \dfrac{8}{{{n^6}}}} \right)}}}}{{1 + \dfrac{{12}}{n}}}\) \(= \dfrac{{n\sqrt[3]{{1 - \dfrac{7}{{{n^3}}} - \dfrac{5}{{{n^5}}} + \dfrac{8}{{{n^6}}}}}}}{{1 + \dfrac{{12}}{n}}}\)
\(\eqalign{
& \text{ Vì }\,\lim n\root 3 \of {1 - {7 \over {{n^3}}} - {5 \over {{n^5}}} + {8 \over n^6}} = + \infty \cr 
& \text{ và }\,\lim \left( {1 + {{12} \over n}} \right) = 1 > 0 \cr 
& \text{ nên }\,{{\mathop{\rm lim u}\nolimits} _n} = + \infty \cr} \)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            