Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 1. Khái niệm đạo hàm
Câu 10 trang 195 SGK Đại số và Giải tích 11 Nâng cao>
a. Tính f’(3) và f’(-4) nếu
LG a
Tính \(f’(3)\) và \(f’(-4)\) nếu \(f(x) = {x^3}\)
Phương pháp giải:
Sử dụng công thức \( f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} {{f\left( x \right) - f\left( {{x_0}} \right)} \over {x - {x_0}}}\)
Lời giải chi tiết:
Với \(x_0\in\mathbb R\) ta có:
\(\eqalign{ & f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} {{f\left( x \right) - f\left( {{x_0}} \right)} \over {x - {x_0}}} \cr & = \mathop {\lim }\limits_{x \to {x_0}} {{{x^3} - x_0^3} \over {x - {x_0}}} \cr &= \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {{x^2} + x{x_0} + x_0^2} \right)}}{{x - {x_0}}}\cr &= \mathop {\lim }\limits_{x \to {x_0}} \left( {x+ x{x_0} + x_0^2} \right) = 3x_0^2 \cr} \)
Suy ra \(f'\left( 3 \right) =3.3^2=27\)
\(f'\left( { - 4} \right) =3.(-4)^2= 48\)
LG b
Tính \(f’(1)\) và \(f’(9)\) nếu \(f\left( x \right) = \sqrt x \)
Lời giải chi tiết:
Với \(x_0> 0\) ta có :
\(\eqalign{ & f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} {{f\left( x \right) - f\left( {{x_0}} \right)} \over {x - {x_0}}} \cr & = \mathop {\lim }\limits_{x \to {x_0}} {{\sqrt x - \sqrt {{x_0}} } \over {x - {x_0}}} \cr &= \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt x - \sqrt {{x_0}} }}{{\left( {\sqrt x - \sqrt {{x_0}} } \right)\left( {\sqrt x + \sqrt {{x_0}} } \right)}}\cr &= \mathop {\lim }\limits_{x \to {x_0}} {1 \over {\sqrt x + \sqrt {{x_0}} }} = {1 \over {2\sqrt {{x_0}} }} \cr} \)
Suy ra: \(f'\left( 1 \right) = \frac{1}{{2\sqrt 1 }} ={1 \over 2}\)
\(f'\left( 9 \right) = \frac{1}{{2\sqrt 9 }}= {1 \over 6}\)
Loigiaihay.com




