Bài 64 trang 48 SBT Hình học 10 Nâng cao


Giải bài tập Bài 64 trang 48 SBT Hình học 10 Nâng cao

Quảng cáo

Đề bài

Chứng minh rằng khoảng cách d từ trọng tâm tam giác \(ABC\) đến tâm đường tròn ngoại tiếp của tam giác đó thỏa mãn hệ thức:

\({R^2} - {d^2} = \dfrac{{{a^2} + {b^2} + {c^2}}}{9}.\)

Lời giải chi tiết

Giả sử tam giác \(ABC\) nội tiếp trong đường tròn tâm \(O\) và có trọng tâm \(G\). Ta có

\(\begin{array}{*{20}{l}}{{{\overrightarrow {OA} }^2} + {{\overrightarrow {OB} }^2} + {{\overrightarrow {OC} }^2}}\\{ = {{\left( {\overrightarrow {GA}  - \overrightarrow {GO} } \right)}^2} +  {{\left( {\overrightarrow {GB}  - \overrightarrow {GO} } \right)}^2} + \\ {{\left( {\overrightarrow {GC}  - \overrightarrow {GO} } \right)}^2}}\\\begin{array}{l} = {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2}\\ - 2\overrightarrow {GO} \left( {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC} } \right) + 3{\overrightarrow {GO} ^2}\end{array}\end{array}\)

Do \(OA=OB=OC=R\) và \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \) nên \(3{R^2} = G{A^2} + G{B^2} + G{C^2} + 3{d^2}\).

Mặt khác

\(\begin{array}{*{20}{l}}{G{A^2} + G{B^2} + G{C^2}}\\{ = \dfrac{4}{9}\left( {m_a^2 + m_b^2 + m_c^2} \right)}\\{ = \dfrac{4}{9}\left( {\dfrac{{{b^2} + {c^2}}}{2} - \dfrac{{{a^2}}}{4} + \dfrac{{{a^2} + {c^2}}}{2}} \right.}\\\begin{array}{l}\left. { - \dfrac{{{b^2}}}{4} + \dfrac{{{a^2} + {b^2}}}{2} - \dfrac{{{c^2}}}{4}} \right)\\ = \dfrac{{{a^2} + {b^2} + {c^2}}}{3}\end{array}\end{array}\)

Do đó \(3{R^2} = \dfrac{{{a^2} + {b^2} + {c^2}}}{3} + 3{d^2}\), suy ra  \({R^2} - {d^2} = \dfrac{{{a^2} + {b^2} + {c^2}}}{9}\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!