Bài 55 trang 47 SBT Hình học 10 Nâng cao


Giải bài tập Bài 55 trang 47 SBT Hình học 10 Nâng cao

Quảng cáo

Đề bài

Tam giác \(ABC\) có \(\widehat B = {60^0}; \widehat C = {45^0}; BC = a\).

a) Tính độ dài hai cạnh \(AB, AC.\)

b) Chứng minh \(\cos {75^0} = \dfrac{{\sqrt 6  - \sqrt 2 }}{4}\).

Lời giải chi tiết

 

a) Ta có \(\widehat A = {180^0} - ({60^0} + {45^0}) = {75^0}.\)

Đặt \(AC=b, AB=c\). Theo định lí hàm sớ sin:

\(\dfrac{b}{{\sin {{60}^o}}} = \dfrac{a}{{\sin {{75}^0}}} = \dfrac{c}{{{\mathop{\rm s}\nolimits} {\rm{in4}}{5^0}}}\).

Suy ra \(b = \dfrac{{a\sqrt 3 }}{{2\sin {{75}^0}}}  ;   c = \dfrac{{a\sqrt 2 }}{{2\sin {{75}^0}}}.\)

b) Kẻ \(AH \bot BC\) (h.52), do \(\widehat B, \widehat C\) đều là góc nhọn nên \(H\) thuộc đoạn \(BC\), hay \(BC=HB+HC\). Ta có

\(\begin{array}{l}\left\{ \begin{array}{l}HC = \dfrac{{b\sqrt 2 }}{2}\\HB = \dfrac{c}{2}\end{array} \right.\\ \Rightarrow  a = HC + HB = b\dfrac{{\sqrt 2 }}{2} + \dfrac{c}{2} \\= \dfrac{{a\sqrt 6  + a\sqrt 2 }}{{4.\sin {{75}^0}}}   \\ \Rightarrow   \sin {75^0} = \dfrac{{\sqrt 6  + \sqrt 2 }}{4}.\\\cos {75^0} = \sqrt {1 - {{\sin }^2}{{75}^0}}\\  = \sqrt {1 - {{\left( {\dfrac{{\sqrt 6  + \sqrt 2 }}{4}} \right)}^2}} \\ = \dfrac{1}{4}\sqrt {8 - 2\sqrt {12} } \\ = \dfrac{1}{4}\sqrt {{{\left( {\sqrt 6  - \sqrt 2 } \right)}^2}}  = \dfrac{{\sqrt 6  - \sqrt 2 }}{4}\end{array}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!