Bài 5.6 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức>
Cho tam giác vuông ABC vuông tại A, có AB = h và góc B bằng (alpha ) (H.5.3). Từ A kẻ (A{A_1} bot BC), từ ({A_1}) kẻ ({A_1}{A_2} bot AC), sau đó lại kẻ ({A_2}{A_3} bot BC). Tiếp tục quá trình trên, ta được đường gấp khúc vô hạn (A{A_1}{A_2}{A_3} ldots ) Tính độ dài đường gấp khúc này theo h và (alpha )
Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh
Đề bài
Cho tam giác vuông ABC vuông tại A, có AB = h và góc B bằng \(\alpha \) (H.5.3). Từ A kẻ \(A{A_1} \bot BC\), từ \({A_1}\) kẻ \({A_1}{A_2} \bot AC\), sau đó lại kẻ \({A_2}{A_3} \bot BC\). Tiếp tục quá trình trên, ta được đường gấp khúc vô hạn \(A{A_1}{A_2}{A_3} \ldots \) Tính độ dài đường gấp khúc này theo h và \(\alpha \)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Dựa vào đề bài để tìm ra công thức tổng quát.
Lời giải chi tiết
Độ dài đường gấp khúc tạo thành cấp số nhân với số hạng tổng quát là:
\({u_n} = sin\;\alpha \; \times h \times {\left( {sin\;\alpha \;} \right)^{n - 1}}\).
Độ dài đường gập khúc: \(A{A_1} + {A_2}{A_3} + \ldots \).
Đây là tổng cấp số nhân lùi vô hạn với \({u_1} = sin\;\alpha \; \times h,\;q = sin\;\alpha \;\).
Nên \(A{A_1} + {A_2}{A_3} + \ldots = \frac{{sin\;\alpha \; \times h}}{{1 - sin\;\alpha \;}}\).
- Bài 5.5 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.4 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.3 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.2 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.1 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức