Bài 2.15 trang 55 SGK Toán 11 tập 1 - Kết nối tri thức>
Xác định công bội, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số nhân sau: a) 1, 4, 16, …; b) (2, - frac{1}{2},frac{1}{8},; ldots )
Đề bài
Xác định công bội, số hạng thứ 5, số hạng tổng quát và số hạng thứ 100 của mỗi cấp số nhân sau:
a) 1, 4, 16, …;
b) \(2, - \frac{1}{2},\frac{1}{8},\; \ldots \)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Cấp số nhân là một dãy số (hữu hạn hay vô hạn), trong đó kể từ số hạng thứ hai mỗi số hạng đều là tích của số hạng đứng ngay trước nó với một số không đổi q. Số q được gọi là công bội của cấp số nhân.
Xác định công bội \(q\) bằng công thức: \(q = \frac{{{u_n}}}{{{u_{n - 1\;}}}}\).
Xác định được \({u_1}\) và q, ta có thể xác định được công thức số hạng tổng quát.
Lời giải chi tiết
a) Cấp số nhân có \({u_1} = 1,\;\;q = \;4\)
Số hạng tổng quát: \({u_n} = {4^{n - 1}}\)
Số hạng thứ 5: \({u_5} = {4^{5 - 1}} = 256\)
Số hạng thứ 100: \({u_{100}} = {4^{100 - 1}} = {4^{99}}\).
b) Cấp số nhân có \({u_1} = 2,\;q = - \frac{1}{4}\)
Số hạng tổng quát: \({u_n} = 2 \times {\left( { - \frac{1}{4}} \right)^{n - 1}}\)
Số hạng thứ 5: \({u_5} = 2 \times {\left( { - \frac{1}{4}} \right)^{5 - 1}} = \frac{1}{{128}}\)
Số hạng thứ 100: \({u_{100}} = 2 \times {\left( { - \frac{1}{4}} \right)^{100 - 1}} = \frac{ -1}{{2^{197}}}\)
- Bài 2.16 trang 55 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.17 trang 55 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.18 trang 55 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.19 trang 55 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 2.20 trang 55 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức