Từ điển môn Toán lớp 8 - Tổng hợp các khái niệm Toán 8 Phép nhân đa thức - Từ điển môn Toán 8

Cách nhân hai đơn thức. Cách nhân đơn thức với đa thức - Toán 8

1. Nhân hai đơn thức

Muốn nhân hai đơn thức, ta nhân các hệ số với nhau, nhân các luỹ thừa cùng biến, rồi nhân các kết quả đó với nhau.

Ví dụ: Nhân hai đơn thức \( - 3{x^2}y\) và \(4xy\) ta được: \(( - 3{x^2}y)(4xy) = \left[ {\left( { - 3.4} \right)} \right].({x^2}.x).\left( {y.y} \right) =  - 12.{x^3}.{y^2}\).

2. Nhân đơn thức với đa thức

Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau.

Ví dụ: Nhân đơn thức \(3{x^2}y\) với đa thức \(2{x^2}y - xy + 3{y^2}\) ta được:

\(\begin{array}{l}3{x^2}y\left( {2{x^2}y - xy + 3{y^2}} \right)\\ = (3{x^2}y).(2{x^2}y) - (3{x^2}y).(xy) + (3{x^2}y).(3{y^2})\\ = 3.2.({x^2}.{x^2})\left( {y.y} \right) - 3.({x^2}.x).\left( {y.y} \right) + 3.3.{x^2}.\left( {y.{y^2}} \right)\\ = 6{x^4}{y^2} - 3{x^3}.{y^2} + 9{x^2}{y^3}\end{array}\)

3. Bài tập vận dụng