Từ điển môn Toán lớp 8 - Tổng hợp các khái niệm Toán 8 Phép chia đa thức cho đơn thức - Từ điển môn Toán 8

Cách chia đơn thức cho đơn thức - Toán 8

1. Khái niệm phép chia hết

Phép chia hết là phép chia có số dư bằng 0.

2. Hai đơn thức chia hết

Đơn thức A chia hết cho đơn thức B (\(B \ne 0\)) khi mỗi biến của B đều là biến của A với số mũ không lớn hơn số mũ của nó trong A.

3. Quy tắc chia đơn thức cho đơn thức

Muốn chia đơn thức A cho đơn thức B (với A chia hết cho B), ta làm như sau:

- Chia hệ số của A cho hệ số của B.

- Chia luỹ thừa của từng biến trong A cho luỹ thừa của cùng biến đó trong B.

- Nhân các kết quả vừa tìm được cho nhau.

Ví dụ:

- Chia đơn thức \(16{x^4}{y^3}\) cho đơn thức \( - 8{x^3}{y^2}\) ta được:

\(\begin{array}{l}16{x^4}{y^3}:( - 8{x^3}{y^2})\\ = \left[ {16:( - 8)} \right].({x^4}:{x^3}).\left( {{y^3}:{y^2}} \right)\\ =  - 2xy\end{array}\)

- Chia đơn thức \(6{x^3}{y^2}z\) cho \( - 3xyz\) ta được:

\(\begin{array}{l}6{x^3}{y^2}z:( - 3xyz)\\ = \left[ {6:\left( { - 3} \right)} \right].({x^3}:x).\left( {{y^2}:y} \right).\left( {z:z} \right)\\ =  - 2{x^{3 - 1}}.{y^{2 - 1}}.1\\ =  - 2{x^2}y\end{array}\)

4. Bài tập vận dụng