Trắc nghiệm Bài 1: Đơn thức nhiều biến: Đa thức nhiều biến Toán 8 Cánh diều
Đề bài
Trong các biểu thức đại số sau, biểu thức nào không phải đơn thức?
-
A.
2.
-
B.
\(5x + 9\).
-
C.
\({x^3}{y^2}\).
-
D.
\(3x\).
Có mấy nhóm đơn thức đồng dạng với nhau trong các đơn thức sau: \( - \frac{2}{3}{x^3}y\); \( - x{y^2}\); \(5{x^2}y\); \(6x{y^2}\); \(2{x^3}y\); \(\frac{3}{4}\); \(\frac{1}{2}{x^2}y\).
-
A.
\(2\).
-
B.
\(3\).
-
C.
\(4\).
-
D.
\(5\).
Sau khi thu gọn đơn thức \(2.\left( { - 3{x^3}y} \right){y^2}\) ta được đơn thức:
-
A.
\( - 6{x^3}{y^3}\).
-
B.
\(6{x^3}{y^3}\).
-
C.
\(6{x^3}{y^2}\).
-
D.
\( - 6{x^2}{y^3}\).
Tìm hệ số trong đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\), với \(a\), \(b\) là hằng số.
-
A.
\( - 36\).
-
B.
\( - 36{a^2}{b^2}\).
-
C.
\(36{a^2}{b^2}\).
-
D.
\( - 36{a^2}\).
Tìm phần biến trong đơn thức \(100a{b^2}{x^2}yz\) với \(a\), \(b\) là hằng số.
-
A.
\(a{b^2}{x^2}yz\).
-
B.
\({x^2}y\).
-
C.
\({x^2}yz\).
-
D.
\(100ab\).
Các đơn thức \( - 10\); \(\frac{1}{3}x\); \(2{x^2}y\); \(5{x^2}.{x^2}\) có bậc lần lượt là:
-
A.
0; 1; 3; 4.
-
B.
0; 3; 1; 4.
-
C.
0; 1; 2; 3.
-
D.
0; 1; 3; 2.
Tổng các đơn thức \(3{x^2}{y^4}\)và \(7{x^2}{y^4}\) là
-
A.
\(10{x^2}{y^4}\).
-
B.
\(9{x^2}{y^4}\).
-
C.
\( - 9{x^2}{y^4}\).
-
D.
\( - 4{x^2}{y^4}\).
Hiệu của hai đơn thức \( - 9{y^2}z\) và \( - 12{y^2}z\) là
-
A.
\( - 21{y^2}z\).
-
B.
\( - 3{y^2}z\).
-
C.
\(3{y^4}{z^2}\).
-
D.
\(3{y^2}z\).
Kết quả sau khi thu gọn đơn thức\(1\frac{1}{4}{x^2}y\left( { - \frac{6}{5}xy} \right)\left( { - 2\frac{1}{3}xy} \right)\) là:
-
A.
\(\frac{{7}}{{2}}{x^4}{y^3}\).
-
B.
\(\frac{1}{2}{x^3}{y^3}\).
-
C.
\(-\frac{{7}}{{2}}{x^4}{y^3}\).
-
D.
\( - \frac{1}{2}{x^2}{y^2}\).
Hệ số của đơn thức \({\left( {2{x^2}} \right)^2}\left( { - 3{y^3}} \right){\left( { - 5xz} \right)^3}\) là:
-
A.
\( - 1500\).
-
B.
\( - 750\).
-
C.
30
-
D.
1500
Phần biến số của đơn thức \({\left( { - \frac{a}{4}} \right)^2}3xy\left( {4{a^2}{x^2}} \right)\left( {4\frac{1}{2}a{y^2}} \right)\) (với \(a\), \(b\) là hằng số) là:
-
A.
\(\frac{{27}}{8}{a^5}{x^3}{y^3}\).
-
B.
\({a^5}{x^3}{y^3}\).
-
C.
\(\frac{{27}}{8}{a^5}\).
-
D.
\({x^3}{y^3}\).
Tính giá trị của đơn thức \(5{x^4}{y^2}{z^3}\) tại \(x = - 1\); \(y = - 1\); \(z = - 2\).
-
A.
\(10\).
-
B.
\(20\).
-
C.
\( - 40\).
-
D.
\(40\).
Kết quả sau khi thu gọn biểu thức đại số \(9{\left( {{x^2}{y^2}} \right)^2}x - {\left( { - 2xy} \right)^3}{x^2}y + 3{\left( {2x} \right)^4}x{y^4}\)
-
A.
\(59{x^5}{y^4}\).
-
B.
\(49{x^5}{y^4}\).
-
C.
\(65{x^5}{y^4}\).
-
D.
\(17{x^5}{y^4}\).
Xác định hằng số \(a\) để các đơn thức \({ax}{y^3}{,^{}} - 4{x}{y^3}{,^{}}7x{y^3}\)có tổng bằng \(6x{y^3}\).
-
A.
a = 9.
-
B.
a = 1.
-
C.
a = 3.
-
D.
a = 2.
Cho đơn thức \(A = \left( {2{a^2} + \frac{1}{{{a^2}}}} \right){x^2}{y^4}{z^6}\)\(\left( {a \ne 0} \right)\). Chọn khẳng định đúng:
-
A.
Giá trị của \(A\) luôn không âm với mọi \(x\), \(y\), \(z\).
-
B.
Nếu \(A = 0\) thì \(x = y = z = 0\).
-
C.
Chỉ có 1 giá trị của \(x\) để \(A = 0\).
-
D.
Chỉ có 1 giá trị của \(y\) để \(A = 0\).
Sắp xếp các hạng tử của \(P(x) = 2{{{x}}^3} - 5{{{x}}^2} + {x^4} - 7\) theo lũy thừa giảm dần của biến.
-
A.
\(P(x) = {x^4} + 2{{{x}}^3} - 5{{{x}}^2} - 7\)
-
B.
\(P(x) = 5{{{x}}^2} + 2{{{x}}^3} + {x^4} - 7\)
-
C.
\(P(x) = - 7 - 5{{{x}}^2} + 2{{{x}}^3} + {x^4}\)
-
D.
\(P(x) = - 7 - 5{{{x}}^2} + 2{{{x}}^3} - {x^4}\)
Bậc của đa thức \({x^2}{y^5} - {x^2}{y^4} + {y^6} + 1\) là:
-
A.
4.
-
B.
5.
-
C.
6.
-
D.
7.
Cho đa thức: \(Q(x) = 8{{{x}}^5} + 2{{{x}}^3} - 7{{x}} + 1\). Các hệ số khác 0 của đa thức Q(x):
-
A.
5; 3; 1.
-
B.
8; 2; -7.
-
C.
13; 4; -6; 1.
-
D.
8; 2; -7; 1.
Hệ số cao nhất và hệ số tự do của đa thức: \(P(x) = - {x^4} + 3{{{x}}^2} + 2{{{x}}^4} - {x^2} + {x^3} - 3{{{x}}^3}\) lần lượt là:
-
A.
-1 và 2
-
B.
-1 và 0
-
C.
1 và 0
-
D.
2 và 0
Giá trị của biểu thức \(2{{{x}}^3}{y^2} - 7{{{x}}^3}{y^2} + 5{{{x}}^3}{y^2} + 8{{{x}}^3}{y^2}\) tại x = -1; y = 1 bằng:
-
A.
8
-
B.
-8
-
C.
-13
-
D.
10
Thu gọn đa thức \(M = - 3{{{x}}^2}y - 7{{x}}{y^2} + 3{{{x}}^2}y + 5{{x}}{y^2}\) được kết quả là:
-
A.
\(M = 6{{{x}}^2}y - 12{{x}}{y^2}\)
-
B.
\(M = 12{{x}}{y^2}\)
-
C.
\(M = - 2{{x}}{y^2}\)
-
D.
\(M = - 6{{{x}}^2}y - 2{{x}}{y^2}\)
Tính: \(\left( {5{{{x}}^2} - 3{{x}} + 9} \right) - \left( {2{{{x}}^2} - 3{{x}} + 7} \right)\)
-
A.
\(7{{{x}}^2} - 6{{x}} + 16\)
-
B.
\(3{{{x}}^2} + 2\)
-
C.
\(3{{{x}}^2} + 6{{x}} + 16\)
-
D.
\(7{{{x}}^2} + 2\)
Tính giá trị của đa thức: \(Q = 3{{{x}}^4} + 2{y^4} - 3{{{z}}^2} + 4\) theo x biết \(y = x{;^{}}z = {x^2}\) được kết quả là:
-
A.
\(Q = 3{{{x}}^4}\)
-
B.
\(Q = 3{{{x}}^4} - 4\)
-
C.
\(Q = - 3{{{x}}^4} - 4\)
-
D.
\(Q = 2{{{x}}^4} + 4\)
\({x^3} - 3{{x}} + 1\) tại x thỏa mãn \(\left( {2{{{x}}^2} + 7} \right)\left( {x + 2} \right) = 0\) bằng:
-
A.
10
-
B.
1
-
C.
-1
-
D.
11
Giá trị của đa thức \(3{{{x}}^4}{y^5} - 5{{{x}}^3} - 3{{{x}}^4}{y^5}\) tại x = -1; y = 20092008
-
A.
\({20092008^4}\)
-
B.
\({20082009^4}\)
-
C.
-5
-
D.
5
Tìm đa thức P, biết: \(P + \left( {2{{{x}}^2} + 6{{x}}y - 5{y^2}} \right) = 3{{{x}}^2} - 6{{x}}y - 5{y^2}\)
-
A.
\(P = {x^2} - 12{{x}}y\)
-
B.
\(P = {x^2} + 10{y^2}\)
-
C.
\(P = - {x^2} - 12{{x}}y + 10{y^2}\)
-
D.
\(P = 12{{x}}y + 10{y^2}\)
Tìm giá trị của x để Q = 0 biết \(Q = 5{{{x}}^{n + 2}} + 3{{{x}}^n} + 2{{{x}}^{n + 2}} + 4{{{x}}^n} + {x^{n + 2}} + {x^n}\left( {n \in N} \right)\)
-
A.
0
-
B.
1
-
C.
-1
-
D.
0 và 1
Bậc của đa thức \(\left( {{x^2} + {y^2} - 2{{x}}y} \right) - \left( {{x^2} + {y^2} + 2{{x}}y} \right) + \left( {4{{x}}y - 1} \right)\) là:
-
A.
2
-
B.
1
-
C.
3
-
D.
0
Giá trị của đa thức \(Q = {x^2}{y^3} + 2{{{x}}^2} + 4\) như thế nào khi x < 0, y > 0:
-
A.
Q = 0
-
B.
Q > 0
-
C.
Q < 0
-
D.
Không xác định được
: Tính giá trị của biểu thức \(A = {{a}}{{{x}}^3}{y^3} + b{{{x}}^2}y + c{{x}}y\) với a, b, c là các hằng số tại
x = y = -2.
-
A.
64a + 8b + 4c
-
B.
-64a – 8b – 4c
-
C.
64a – 8b + 8c
-
D.
64a – 8b + 4c
Cho đa thức \(4{{{x}}^5}{y^2} - 5{{{x}}^3}y + 7{{{x}}^3}y + 2{{a}}{{{x}}^5}{y^2}\). Tìm a để bậc đa thức bằng 4.
-
A.
a = 2
-
B.
a = 0
-
C.
a = -2
-
D.
a = 1
Tính giá trị của đa thức \(3{{{x}}^4} + 5{{{x}}^2}{y^2} + 2{y^4} + 2{y^2}\) biết rằng \({x^2} + {y^2} = 2\)
-
A.
6
-
B.
8
-
C.
12
-
D.
0
Lời giải và đáp án
Trong các biểu thức đại số sau, biểu thức nào không phải đơn thức?
-
A.
2.
-
B.
\(5x + 9\).
-
C.
\({x^3}{y^2}\).
-
D.
\(3x\).
Đáp án : B
Sử dụng định nghĩa đơn thức: Đơn thức là biểu thức đại số chỉ gồm một số, hoặc một biến, hoặc một tích giữa các số và các biến.
Theo định nghĩa đơn thức thì \(5x + 9\) không là đơn thức.
Có mấy nhóm đơn thức đồng dạng với nhau trong các đơn thức sau: \( - \frac{2}{3}{x^3}y\); \( - x{y^2}\); \(5{x^2}y\); \(6x{y^2}\); \(2{x^3}y\); \(\frac{3}{4}\); \(\frac{1}{2}{x^2}y\).
-
A.
\(2\).
-
B.
\(3\).
-
C.
\(4\).
-
D.
\(5\).
Đáp án : B
Sử dụng định nghĩa đơn thức đồng dạng: Hai đơn thức đồng dạng là hai đơn thức có hệ số khác \(0\)và có cùng phần biến. Các số khác \(0\) được coi là những đơn thức đồng dạng.
Có ba nhóm đơn thức đồng dạng trong các đơn thức đã cho gồm :
Nhóm thứ nhất : \( - \frac{2}{3}{x^3}y\), \(2{x^3}y\).
Nhóm thứ hai: \(5{x^2}y\), \(\frac{1}{2}{x^2}y\).
Nhóm thứ ba: \( - x{y^2}\), \(6x{y^2}\).
\( \frac {3}{4} \) không có đơn thức nào đồng dạng.
Sau khi thu gọn đơn thức \(2.\left( { - 3{x^3}y} \right){y^2}\) ta được đơn thức:
-
A.
\( - 6{x^3}{y^3}\).
-
B.
\(6{x^3}{y^3}\).
-
C.
\(6{x^3}{y^2}\).
-
D.
\( - 6{x^2}{y^3}\).
Đáp án : A
Ta có: \(2.\left( { - 3{x^3}y} \right){y^2} = 2.\left( { - 3} \right).{x^3}.y.{y^2} = - 6{x^3}{y^3}\).
Tìm hệ số trong đơn thức \( - 36{a^2}{b^2}{x^2}{y^3}\), với \(a\), \(b\) là hằng số.
-
A.
\( - 36\).
-
B.
\( - 36{a^2}{b^2}\).
-
C.
\(36{a^2}{b^2}\).
-
D.
\( - 36{a^2}\).
Đáp án : B
Tìm phần biến trong đơn thức \(100a{b^2}{x^2}yz\) với \(a\), \(b\) là hằng số.
-
A.
\(a{b^2}{x^2}yz\).
-
B.
\({x^2}y\).
-
C.
\({x^2}yz\).
-
D.
\(100ab\).
Đáp án : C
Các đơn thức \( - 10\); \(\frac{1}{3}x\); \(2{x^2}y\); \(5{x^2}.{x^2}\) có bậc lần lượt là:
-
A.
0; 1; 3; 4.
-
B.
0; 3; 1; 4.
-
C.
0; 1; 2; 3.
-
D.
0; 1; 3; 2.
Đáp án : A
Đơn thức\( - 10\)có bậc là \(0\).
Đơn thức \(\frac{1}{3}x\) có bậc là \(1.\)
Đơn thức\(2{x^2}y\) có bậc là \(2 + 1 = 3.\)
Đơn thức\(5{x^2}.{x^2} = 5{x^4}\) có bậc là \(4.\)
Các đơn thức \( - 10\); \(\frac{1}{3}x\); \(2{x^2}y\); \(5{x^2}.{x^2}\) có bậc lần lượt là: 0; 1; 3; 4.
Tổng các đơn thức \(3{x^2}{y^4}\)và \(7{x^2}{y^4}\) là
-
A.
\(10{x^2}{y^4}\).
-
B.
\(9{x^2}{y^4}\).
-
C.
\( - 9{x^2}{y^4}\).
-
D.
\( - 4{x^2}{y^4}\).
Đáp án : A
\(3{x^2}{y^4} + 7{x^2}{y^4} = \left( {3 + 7} \right){x^2}{y^4} = 10{x^2}{y^4}\)
Hiệu của hai đơn thức \( - 9{y^2}z\) và \( - 12{y^2}z\) là
-
A.
\( - 21{y^2}z\).
-
B.
\( - 3{y^2}z\).
-
C.
\(3{y^4}{z^2}\).
-
D.
\(3{y^2}z\).
Đáp án : D
\( - 9{y^2}z - \left( { - 12{y^2}z} \right) = \left( { - 9 + 12} \right){y^2}z\)\( = 3{y^2}z\).
Kết quả sau khi thu gọn đơn thức\(1\frac{1}{4}{x^2}y\left( { - \frac{6}{5}xy} \right)\left( { - 2\frac{1}{3}xy} \right)\) là:
-
A.
\(\frac{{7}}{{2}}{x^4}{y^3}\).
-
B.
\(\frac{1}{2}{x^3}{y^3}\).
-
C.
\(-\frac{{7}}{{2}}{x^4}{y^3}\).
-
D.
\( - \frac{1}{2}{x^2}{y^2}\).
Đáp án : A
Ta có:
\(1\frac{1}{4}{x^2}y\left( { - \frac{6}{5}xy} \right)\left( { - 2\frac{1}{3}xy} \right) = \left[ {\frac{5}{4}.\left( { - \frac{6}{5}} \right).\left( {\frac{{ - 7}}{3}} \right)} \right]\left( {{x^2}.x.x} \right).\left( {y.y.y} \right) = \frac{{7}}{{2}}{x^4}{y^3}.\)
Hệ số của đơn thức \({\left( {2{x^2}} \right)^2}\left( { - 3{y^3}} \right){\left( { - 5xz} \right)^3}\) là:
-
A.
\( - 1500\).
-
B.
\( - 750\).
-
C.
30
-
D.
1500
Đáp án : D
Ta có:
\(\begin{array}{l}{\left( {2{x^2}} \right)^2}\left( { - 3{y^3}} \right){\left( { - 5xz} \right)^3} \\= 4{x^4}.\left( { - 3{y^3}} \right).\left( { - 125{x^3}{z^3}} \right)\\= 4.\left( { - 3} \right).\left( { - 125} \right).{x^4}.{x^3}.{y^3}.{z^3}\\= 1500{x^7}{y^3}{z^3}.\end{array}\)
Hệ số của đơn thức đã cho là \(1500.\)
Phần biến số của đơn thức \({\left( { - \frac{a}{4}} \right)^2}3xy\left( {4{a^2}{x^2}} \right)\left( {4\frac{1}{2}a{y^2}} \right)\) (với \(a\), \(b\) là hằng số) là:
-
A.
\(\frac{{27}}{8}{a^5}{x^3}{y^3}\).
-
B.
\({a^5}{x^3}{y^3}\).
-
C.
\(\frac{{27}}{8}{a^5}\).
-
D.
\({x^3}{y^3}\).
Đáp án : D
\(\begin{array}{l}{\left( { - \frac{a}{4}} \right)^2}3xy\left( {4{a^2}{x^2}} \right)\left( {4\frac{1}{2}a{y^2}} \right) = \frac{{{a^2}}}{{16}}.3xy.4{a^2}{x^2}.\frac{9}{2}a{y^2}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {\frac{{{a^2}}}{{16}}.3.4{a^2}.\frac{9}{2}a} \right).{x^3}{y^3}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{27}}{8}{a^5}{x^3}{y^3}.\end{array}\)
Phần biến số của đơn thức đã cho là: \({x^3}{y^3}.\)
Tính giá trị của đơn thức \(5{x^4}{y^2}{z^3}\) tại \(x = - 1\); \(y = - 1\); \(z = - 2\).
-
A.
\(10\).
-
B.
\(20\).
-
C.
\( - 40\).
-
D.
\(40\).
Đáp án : C
Thay \(x = - 1\), \(y = - 1\), \(z = - 2\) vào đơn thức \(5{x^4}{y^2}{z^3}\) ta được: \(5.{\left( { - 1} \right)^4}.{\left( { - 1} \right)^2}.{\left( { - 2} \right)^3} = - 40.\)
Kết quả sau khi thu gọn biểu thức đại số \(9{\left( {{x^2}{y^2}} \right)^2}x - {\left( { - 2xy} \right)^3}{x^2}y + 3{\left( {2x} \right)^4}x{y^4}\)
-
A.
\(59{x^5}{y^4}\).
-
B.
\(49{x^5}{y^4}\).
-
C.
\(65{x^5}{y^4}\).
-
D.
\(17{x^5}{y^4}\).
Đáp án : C
Thu gọn các đơn thức nhỏ trong biểu thức đại số rồi mới tiến hằng cộng, trừ các đơn thức đồng dạng.
Áp dụng các công thức \({\left( {{a^m}} \right)^n} = {a^{m.n}}\), \({a^m}.{a^n} = {a^{m + n}}\), \({\left( {x.y} \right)^n} = {x^n}.{y^m}\).
Ta có:
\(9{\left( {{x^2}{y^2}} \right)^2}x - {\left( { - 2xy} \right)^3}{x^2}y + 3{\left( {2x} \right)^4}x{y^4}\)
\( = 9{\left( {{x^2}} \right)^2}{\left( {{y^2}} \right)^2}x - {\left( { - 2} \right)^3}{x^3}{y^3}{x^2}y + {3.2^4}{x^4}x{y^4}\)
\( = 9{x^4}{y^4}x - \left( { - 8} \right){x^3}{y^3}{x^2}y + 48{x^4}x{y^4}\)
\( = 9{x^5}{y^4} + 8{x^5}{y^4} + 48{x^5}{y^4}\)
\( = \left( {9 + 8 + 48} \right){x^5}{y^4}\)
\( = 65{x^5}{y^4}\).
Xác định hằng số \(a\) để các đơn thức \({ax}{y^3}{,^{}} - 4{x}{y^3}{,^{}}7x{y^3}\)có tổng bằng \(6x{y^3}\).
-
A.
a = 9.
-
B.
a = 1.
-
C.
a = 3.
-
D.
a = 2.
Đáp án : C
Thực hiện cộng các đơn thức rồi cho kết quả hệ số bằng 6. Từ đó tìm ra hằng số a
Ta có \(ax{y^3} + \left( { - 4xy^3} \right) + 7x{y^3} = \left( {a - 4 + 7} \right)x{y^3}\)
Từ giả thiết suy ra:
\(a + 3 = 6 \\ a = 6 - 3 \\ a = 3\)
Cho đơn thức \(A = \left( {2{a^2} + \frac{1}{{{a^2}}}} \right){x^2}{y^4}{z^6}\)\(\left( {a \ne 0} \right)\). Chọn khẳng định đúng:
-
A.
Giá trị của \(A\) luôn không âm với mọi \(x\), \(y\), \(z\).
-
B.
Nếu \(A = 0\) thì \(x = y = z = 0\).
-
C.
Chỉ có 1 giá trị của \(x\) để \(A = 0\).
-
D.
Chỉ có 1 giá trị của \(y\) để \(A = 0\).
Đáp án : A
Ta xét dấu của các hệ số và các biến.
\({x^2} \ge 0;\,\,{y^4} \ge 0;\,\,{z^6} \ge 0\,\,\, \Rightarrow \,\,{x^2}{y^4}{z^6} \ge 0\)với mọi \(x;\,y;\,z.\)
\(A = \left( {2{a^2} + \frac{1}{{{a^2}}}} \right){x^2}{y^4}{z^6}\,\,\,\left( {a \ne 0} \right).\)
Ta có: \(2{a^2} + \frac{1}{{{a^2}}} > 0\)với \(a \ne 0.\)
Lại có: \({x^2} \ge 0;\,\,{y^4} \ge 0;\,\,{z^6} \ge 0\,\,\, \Rightarrow \,\,{x^2}{y^4}{z^6} \ge 0\)với mọi \(x;\,y;\,z.\)
Sắp xếp các hạng tử của \(P(x) = 2{{{x}}^3} - 5{{{x}}^2} + {x^4} - 7\) theo lũy thừa giảm dần của biến.
-
A.
\(P(x) = {x^4} + 2{{{x}}^3} - 5{{{x}}^2} - 7\)
-
B.
\(P(x) = 5{{{x}}^2} + 2{{{x}}^3} + {x^4} - 7\)
-
C.
\(P(x) = - 7 - 5{{{x}}^2} + 2{{{x}}^3} + {x^4}\)
-
D.
\(P(x) = - 7 - 5{{{x}}^2} + 2{{{x}}^3} - {x^4}\)
Đáp án : A
Bậc của đa thức \({x^2}{y^5} - {x^2}{y^4} + {y^6} + 1\) là:
-
A.
4.
-
B.
5.
-
C.
6.
-
D.
7.
Đáp án : D
\({x^2}{y^5}\) có bậc là 7.
\({x^2}{y^4}\) có bậc là 6
\({y^6}\) có bậc là 6
1 có bậc là 0
Vậy đa thức \({x^2}{y^5} - {x^2}{y^4} + {y^6} + 1\) có bậc là 7
Cho đa thức: \(Q(x) = 8{{{x}}^5} + 2{{{x}}^3} - 7{{x}} + 1\). Các hệ số khác 0 của đa thức Q(x):
-
A.
5; 3; 1.
-
B.
8; 2; -7.
-
C.
13; 4; -6; 1.
-
D.
8; 2; -7; 1.
Đáp án : D
Hệ số cao nhất và hệ số tự do của đa thức: \(P(x) = - {x^4} + 3{{{x}}^2} + 2{{{x}}^4} - {x^2} + {x^3} - 3{{{x}}^3}\) lần lượt là:
-
A.
-1 và 2
-
B.
-1 và 0
-
C.
1 và 0
-
D.
2 và 0
Đáp án : C
Thu gọn đa thức rồi xác định hệ số cao nhất và hệ số tự do.
Hệ số cao nhất là hệ số của hạng tử có bậc cao nhất.
Ta có: \(P(x) = - {x^4} + 3{{{x}}^2} + 2{{{x}}^4} - {x^2} + {x^3} - 3{{{x}}^3} = {x^4} - 2{{{x}}^3} + 2{{{x}}^2}\) có hệ số cao nhất là 1 và hệ số tự do là 0
Giá trị của biểu thức \(2{{{x}}^3}{y^2} - 7{{{x}}^3}{y^2} + 5{{{x}}^3}{y^2} + 8{{{x}}^3}{y^2}\) tại x = -1; y = 1 bằng:
-
A.
8
-
B.
-8
-
C.
-13
-
D.
10
Đáp án : B
Ta có: \(2{{{x}}^3}{y^2} - 7{{{x}}^3}{y^2} + 5{{{x}}^3}{y^2} + 8{{{x}}^3}{y^2} = 8{{{x}}^3}{y^2}\)
Thay x = -1; y = 1 vào biểu thức \(8{{{x}}^3}{y^2}\) ta có: \(-8.{\left( { - 1} \right)^3}{.1^2} = - 8\)
Thu gọn đa thức \(M = - 3{{{x}}^2}y - 7{{x}}{y^2} + 3{{{x}}^2}y + 5{{x}}{y^2}\) được kết quả là:
-
A.
\(M = 6{{{x}}^2}y - 12{{x}}{y^2}\)
-
B.
\(M = 12{{x}}{y^2}\)
-
C.
\(M = - 2{{x}}{y^2}\)
-
D.
\(M = - 6{{{x}}^2}y - 2{{x}}{y^2}\)
Đáp án : C
Nhóm các đơn thức đồng dạng với nhau
Ta có:
\(M = - 3{{{x}}^2}y - 7{{x}}{y^2} + 3{{{x}}^2}y + 5{{x}}{y^2} = \left( { - 3{{{x}}^2}y + 3{{{x}}^2}y} \right) + \left( { - 7{{x}}{y^2} + 5{{x}}{y^2}} \right) = - 2{{x}}{y^2}\)
Tính: \(\left( {5{{{x}}^2} - 3{{x}} + 9} \right) - \left( {2{{{x}}^2} - 3{{x}} + 7} \right)\)
-
A.
\(7{{{x}}^2} - 6{{x}} + 16\)
-
B.
\(3{{{x}}^2} + 2\)
-
C.
\(3{{{x}}^2} + 6{{x}} + 16\)
-
D.
\(7{{{x}}^2} + 2\)
Đáp án : B
\(\left( {5{{{x}}^2} - 3{{x}} + 9} \right) - \left( {2{{{x}}^2} - 3{{x}} + 7} \right) \)
\(= 5{{{x}}^2} - 3{{x}} + 9 - 2{{{x}}^2} + 3{{x}} - 7 \)
\(= \left(5{{{x}}^2} - 2{{{x}}^2} \right) + \left(- 3{{x}} + 3{{x}} \right) + (9 - 7)\)
\(= 3{{{x}}^2} + 2\)
Tính giá trị của đa thức: \(Q = 3{{{x}}^4} + 2{y^4} - 3{{{z}}^2} + 4\) theo x biết \(y = x{;^{}}z = {x^2}\) được kết quả là:
-
A.
\(Q = 3{{{x}}^4}\)
-
B.
\(Q = 3{{{x}}^4} - 4\)
-
C.
\(Q = - 3{{{x}}^4} - 4\)
-
D.
\(Q = 2{{{x}}^4} + 4\)
Đáp án : D
Thay \(y = x{;^{}}z = {x^2}\) vào đa thức Q rồi tính
Công thức lũy thừa \({\left( {{x^n}} \right)^m} = {x^{n.m}}\)
\(Q = 3{{{x}}^4} + 2{{{x}}^4} - 3{\left( {{x^2}} \right)^2} + 4 = 3{{{x}}^4} + 2{{{x}}^4} - 3{{{x}}^4} + 4 = 2{{{x}}^4} + 4\)
\({x^3} - 3{{x}} + 1\) tại x thỏa mãn \(\left( {2{{{x}}^2} + 7} \right)\left( {x + 2} \right) = 0\) bằng:
-
A.
10
-
B.
1
-
C.
-1
-
D.
11
Đáp án : C
Ta tìm các giá trị của x thỏa mãn \(\left( {2{{{x}}^2} + 7} \right)\left( {x + 2} \right) = 0\) sau đó thay vào biểu thức.
Vì \(2{{{x}}^2} + 7 > 0\) với mọi x nên ta có:
\(\left( {2{{{x}}^2} + 7} \right)\left( {x + 2} \right) = 0\) khi \( x + 2 = 0 \), do đó \(x = - 2\)
Thay x = -2 vào biểu thức \({x^3} - 3{{x}} + 1\) ta được:
\({\left( { - 2} \right)^3} - 3.\left( { - 2} \right) + 1 = - 1\)
Giá trị của đa thức \(3{{{x}}^4}{y^5} - 5{{{x}}^3} - 3{{{x}}^4}{y^5}\) tại x = -1; y = 20092008
-
A.
\({20092008^4}\)
-
B.
\({20082009^4}\)
-
C.
-5
-
D.
5
Đáp án : D
Thay giá trị x = -1; y = 20092008 vào biểu thức \( - 5{{{x}}^3}\) ta được:
\( - 5.{\left( { - 1} \right)^3} = 5\)
Tìm đa thức P, biết: \(P + \left( {2{{{x}}^2} + 6{{x}}y - 5{y^2}} \right) = 3{{{x}}^2} - 6{{x}}y - 5{y^2}\)
-
A.
\(P = {x^2} - 12{{x}}y\)
-
B.
\(P = {x^2} + 10{y^2}\)
-
C.
\(P = - {x^2} - 12{{x}}y + 10{y^2}\)
-
D.
\(P = 12{{x}}y + 10{y^2}\)
Đáp án : A
\(\begin{array}{l}P + \left( {2{{{x}}^2} + 6{{x}}y - 5{y^2}} \right) = 3{{{x}}^2} - 6{{x}}y - 5{y^2}\\P = 3{{{x}}^2} - 6{{x}}y - 5{y^2} - 2{{{x}}^2} - 6{{x}}y + 5{y^2}\\P = {x^2} - 12{{x}}y\end{array}\)
Tìm giá trị của x để Q = 0 biết \(Q = 5{{{x}}^{n + 2}} + 3{{{x}}^n} + 2{{{x}}^{n + 2}} + 4{{{x}}^n} + {x^{n + 2}} + {x^n}\left( {n \in N} \right)\)
-
A.
0
-
B.
1
-
C.
-1
-
D.
0 và 1
Đáp án : A
Ta có:
\(\begin{array}{l}Q = 5{{{x}}^{n + 2}} + 3{{{x}}^n} + 2{{{x}}^{n + 2}} + 4{{{x}}^n} + {x^{n + 2}} + {x^n}\left( {n \in N} \right)\\Q = 8{{{x}}^{n + 2}} + 8{{{x}}^n} = 8{{{x}}^n}\left( {{x^2} + 1} \right)\end{array}\)
Vì \({x^2} + 1 > 0\) với mọi x nên \(Q = 0 \) khi \(8{{{x}}^n}\left( {{x^2} + 1} \right) = 0 \) hay \(x = 0\)
Vậy x = 0 thì Q = 0
Bậc của đa thức \(\left( {{x^2} + {y^2} - 2{{x}}y} \right) - \left( {{x^2} + {y^2} + 2{{x}}y} \right) + \left( {4{{x}}y - 1} \right)\) là:
-
A.
2
-
B.
1
-
C.
3
-
D.
0
Đáp án : D
Ta có:
\(\begin{array}{l}\left( {{x^2} + {y^2} - 2{{x}}y} \right) - \left( {{x^2} + {y^2} + 2{{x}}y} \right) + \left( {4{{x}}y - 1} \right)\\ = {x^2} + {y^2} - 2{{x}}y - {x^2} - {y^2} - 2{{x}}y + 4{{x}}y - 1\\ = \left( {{x^2} - {x^2}} \right) + \left( {{y^2} - {y^2}} \right) + \left( { - 4{{x}}y + 4{{x}}y} \right) - 1 = - 1\end{array}\)
Bậc của -1 là 0
Giá trị của đa thức \(Q = {x^2}{y^3} + 2{{{x}}^2} + 4\) như thế nào khi x < 0, y > 0:
-
A.
Q = 0
-
B.
Q > 0
-
C.
Q < 0
-
D.
Không xác định được
Đáp án : B
\(\begin{array}{l}{x^2}{y^3} > 0\\2{{{x}}^2} > 0\\4 > 0\end{array}\)
Suy ra \(Q = {x^2}{y^3} + 2{{{x}}^2} + 4 > 0\)
: Tính giá trị của biểu thức \(A = {{a}}{{{x}}^3}{y^3} + b{{{x}}^2}y + c{{x}}y\) với a, b, c là các hằng số tại
x = y = -2.
-
A.
64a + 8b + 4c
-
B.
-64a – 8b – 4c
-
C.
64a – 8b + 8c
-
D.
64a – 8b + 4c
Đáp án : D
\(\begin{array}{l}A = a.{\left( { - 2} \right)^3}.{\left( { - 2} \right)^3} + b.{\left( { - 2} \right)^2}.\left( { - 2} \right) + c.\left( { - 2} \right).\left( { - 2} \right)\\A = a.\left( { - 8} \right).\left( { - 8} \right) + b.4.\left( { - 2} \right) + c.4\\A = 64{{a}} - 8b + 4c\end{array}\)
Cho đa thức \(4{{{x}}^5}{y^2} - 5{{{x}}^3}y + 7{{{x}}^3}y + 2{{a}}{{{x}}^5}{y^2}\). Tìm a để bậc đa thức bằng 4.
-
A.
a = 2
-
B.
a = 0
-
C.
a = -2
-
D.
a = 1
Đáp án : C
Ta có:
\(\begin{array}{l}4{{{x}}^5}{y^2} - 5{{{x}}^3}y + 7{{{x}}^3}y + 2{{a}}{{{x}}^5}{y^2}\\ = \left( {4{{{x}}^5}{y^2} + 2{{a}}{{{x}}^5}{y^2}} \right) + \left( { - 5{{{x}}^3}y + 7{{{x}}^3}y} \right)\\ = \left( {4 + 2{{a}}} \right){x^5}{y^2} + 2{{{x}}^3}y\end{array}\)
Để bậc của đa thức đã cho bằng 4 thì hệ số của \({x^5}{y^2}\) phải bằng 0 (vì nếu hệ số của \({x^5}{y^2}\) khác 0 thì đa thức có bậc là 5 + 2 = 7.
Do đó \(4 + 2{{a}} = 0 \) suy ra \( a = - 2\)
Tính giá trị của đa thức \(3{{{x}}^4} + 5{{{x}}^2}{y^2} + 2{y^4} + 2{y^2}\) biết rằng \({x^2} + {y^2} = 2\)
-
A.
6
-
B.
8
-
C.
12
-
D.
0
Đáp án : C
\(3{{{x}}^4} + 5{{{x}}^2}{y^2} + 2{y^4} + 2{y^2} = (3{{{x}}^4} + 3{{{x}}^2}{y^2}) + (2{{{x}}^2}{y^2} + 2{y^4} + 2{y^2}) = 3{{{x}}^2}\left( {{x^2} + {y^2}} \right) + 2{y^2}\left( {{x^2} + {y^2} + 1} \right)\)
Mà \({x^2} + {y^2} = 2\) nên ta có: \(3{{{x}}^2}\left( {{x^2} + {y^2}} \right) + 2{y^2}\left( {{x^2} + {y^2} + 1} \right) = 6{{{x}}^2} + 6{y^2} = 6\left( {{x^2} + {y^2}} \right) = 6.2 = 12\)
Luyện tập và củng cố kiến thức Bài 2: Các phép tính với đa thức nhiều biến Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 3: Hằng đẳng thức đáng nhớ Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử Toán 8 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài 10: Hình đồng dạng trong thực tiễn Toán 8 Cánh diều
- Trắc nghiệm Bài 9: Hình đồng dạng Toán 8 Cánh diều
- Trắc nghiệm Bài 8: Trường hợp đồng dạng thứ ba của tam giác Toán 8 Cánh diều
- Trắc nghiệm Bài 7: Trường hợp đồng dạng thứ hai của tam giác Toán 8 Cánh diều
- Trắc nghiệm Bài 6: Trường hợp đồng dạng thứ nhất của tam giác Toán 8 Cánh diều