Lý thuyết về cộng, trừ đa thức


Muốn cộng hai đa thức ta có thể lần lượt thực hiện các bước:

1. Các kiến thức cần nhớ 

Để cộng (hay trừ) hai đa thức, ta làm như sau:

Bước 1: Viết hai đa thức trong dấu ngoặc

Bước 2: Thực hiện bỏ dấu ngoặc (theo quy tắc dấu ngoặc)

Bước 3: Nhóm các hạng tử đồng dạng

Bước 4: Cộng, trừ các đơn thức đồng dạng.

Ví dụ: Cho đa thức \(P(x) = 3 + 5{x^2} - 3{x^3} + 4{x^2} - 2x - {x^3} + 5{x^5}.\) Thu gọn và sắp xếp đa thức $P\left( x \right)$

Giải

\(P(x) = 3 + 5{x^2} - 3{x^3} + 4{x^2} - 2x - {x^3} + 5{x^5}\)

\( = 5{x^5} + \left( { - 3{x^3} - {x^3}} \right) + \left( {5{x^2} + 4{x^2}} \right) - 2x + 3\)

\( = 5{x^5} - 4{x^3} + 9{x^2} - 2x + 3\)

Ví dụ 2: Cho 2 đa thức 

\(A = {x^2}-2y + xy + 1\)

          \(B = {x^2} + y - {x^2}{y^2} - 1\)

Tìm đa thức C = A +B

Vậy đa thức \(C = 2{x^2}-y + xy - {x^2}{y^2}\)

2. Các dạng toán thường gặp 

Dạng 1: Tính tổng, hiệu hai đa thức

Phương pháp:

Thực hiện phép cộng (trừ) hai đa thức.

Dạng 2: Tìm một trong hai đa thức biết đa thức tổng hoặc đa thức hiệu và đa thức còn lại

Phương pháp:

+ Nếu \(M + B = A\) thì \(M = A - B.\)

+ Nếu \(M - B = A\) thì \(M = A + B.\)

+ Nếu \(A - M = B\) thì \(M = A - B.\)

Dạng 3: Tính giá trị của đa thức tại giá trị cho trước

Phương pháp:

Khi tính giá trị của đa thức tại các giá trị cho trước của các biến, ta thu gọn đa thức và chú ý nhận xét các đặc điểm của đa thức (nếu có) để thực hiện hợp lý các phép tính.


Bình chọn:
4.5 trên 118 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 7 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.