Lý thuyết Số gần đúng. Sai số - SGK Toán 10 Cánh diều


A. Lý thuyết 1. Số gần đúng

Tổng hợp đề thi học kì 1 lớp 10 tất cả các môn - Cánh diều

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...

A. Lý thuyết

1. Số gần đúng

Trong đo đạc và tính toán, ta thường chỉ nhận được các số gần đúng.

2. Sai số của số gần đúng

a) Sai số tuyệt đối

Nếu a là số gần đúng của số đúng \(\overline a \) thì \({\Delta _a} = \left| {\overline a  - a} \right|\) được gọi là sai số tuyệt đối của số gần đúng a.

Chú ý: Sai số tuyệt đối của số gần đúng nhận được trong một phép đo đạc, tính toán càng bé thì kết quả của phép đo đạc, tính toán đó càng chính xác.

b) Độ chính xác của một số gần đúng

Ta nói a là số gần đúng của số đúng \(\overline a \) với độ chính xác d nếu \({\Delta _a} = \left| {\overline a  - a} \right| \le d\) và quy ước viết gọn là \(\overline a  = a \pm d\).

Nhận xét: Nếu \({\Delta _a} \le d\) thì số đúng \(\overline a \) nằm trong đoạn [a – d; a + d] . Bởi vậy, d càng nhỏ thì độ sai lệch của số gần đúng a so với số đúng \(\overline a \) càng ít. Điều đó giải thích vì sao d được gọi là độ chính xác của số gần đúng.

c) Sai số tương đối

Tỉ số \({\delta _a} = \frac{{{\Delta _a}}}{{\left| a \right|}}\) được gọi là sai số tương đối của số gần đúng a.

Nhận xét:

- Nếu \(\overline a  = a \pm d\) thì \({\Delta _a} \le d\). Do đó \({\delta _a} \le \frac{d}{{\left| a \right|}}\). Vì vậy, nếu \(\frac{d}{{\left| a \right|}}\) càng bé thì chất lượng của phép đo đạc, tính toán càng cao.

- Người ta thường viết sai số tương đối dưới dạng phần trăm.

3. Số quy tròn. Quy tròn số đúng và số gần đúng

a) Số quy tròn

Khi quy tròn một số nguyên hoặc một số thập phân đến một hàng nào đó thì số nhận được gọi là số quy tròn của số ban đầu.

b) Quy tròn số đến một hàng cho trước

Nêu lại quy tắc quy tròn số nguyên hoặc số thập phân đến một hàng cho trước:
- Nếu chữ số ngay sau hàng quy tròn nhỏ hơn 5 thì ta chỉ việc thay chữ số đó và các chữ số bên phải nó bời 0.
- Nếu chữ số ngay sau hàng quy tròn lớn hơn hoặc bằng 5 thì ta cũng làm như trên nhưng cộng thêm một đơn vị vào chữ số của hàng quy tròn.

Nhận xét: Khi quy tròn số nguyên hoặc số thập phân đến một hàng cho trước thì sai số tuyệt đối của số quy tròn không vượt quá một phần đơn vị của hàng quy tròn. Như vậy, ta có thể lấy độ chính xác của số quy tròn bằng nửa đơn vị của hàng quy tròn.

c) Quy tròn số gần đúng căn cứ vào độ chính xác cho trước

Cho a là số gần đúng với độ chính xác d. Giả sử a là số nguyên hoặc số thập phân. Khi được yêu cầu quy tròn số a mà không nói rõ quy tròn đến hàng nào thì ta quy tròn số a đến hàng thấp nhất mà d nhỏ hơn một đơn vị của hàng đó.


B. Bài tập

Bài 1: Một bồn hoa có dạng hình tròn với bán kính là 0,8 m. Hai bạn Ngân và Ánh cùng muốn tính diện tích S của bồn hoa đó. Bạn Ngân lấy một giá trị gần đúng của \(\pi \) là 3,1 và được kết quả là \({S_1}\). Bạn Ánh lấy một giá trị gần đúng của \(\pi \) là 3,14 và được kết quả là \({S_2}\).

a) So sánh sai số tuyệt đối \({\Delta _{{S_1}}}\) của số gần đúng \({S_1}\) và sai số tuyệt đối \({\Delta _{{S_2}}}\) của số gần đúng \({S_2}\). Bạn nào cho kết quả chính xác hơn?

b) Ước lượng sai số tuyệt đối \({\Delta _{{S_1}}}\) và \({\Delta _{{S_1}}}\).

Giải:

a) Ta có: \({S_1} = 3,1.0,{8^2} = 1,984\) \(({m^2})\); \({S_2} = 3,14.0,{8^2} = 2,0096\) \(({m^2})\).

Ta thấy: \(3,1 < 3,14 < \pi \) nên \(3,1.0,{8^2} < 3,14.0,{8^2} < \pi .0,{8^2}\), tức là \({S_1} < {S_2} < S\).

Suy ra \({\Delta _{{S_2}}} = \left| {S - {S_2}} \right| < \left| {S - {S_1}} \right| = {\Delta _{{S_1}}}\).

Vậy bạn Ánh cho kết quả chính xác hơn.

b) Do \(3,1 < \pi  < 3,15\) nên \(3,1.0,{8^2} < \pi .0,{8^2} < 3,15.0,{8^2}\). Suy ra \(1,984 < S < 2,016\).

Vậy \({\Delta _{{S_1}}} = \left| {S - {S_1}} \right| < 2,016 - 1,984 = 0,032\).

Ta nói: Kết quả của bạn Ngân có sai số tuyệt đối không vượt quá 0,032 hay có độ chính xác là 0,032.

Do \(3,14 < \pi  < 3,15\) nên \(3,14.0,{8^2} < \pi .0,{8^2} < 3,15.0,{8^2}\). Suy ra \(1,984 < S < 2,016\).

Vậy \({\Delta _{{S_1}}} = \left| {S - {S_1}} \right| < 2,016 - 2,0096 = 0,0064\).

Ta nói: Kết quả của bạn Ánh có sai số tuyệt đối không vượt quá 0,0064 hay có độ chính xác là 0,0064.

Bài 2: Viết số quy tròn của mỗi số gần đúng sau:

a) Số gần đúng a = 1,941,247 với độ chính xác d = 300.

b) Số gần đúng a = 4,1463 với độ chính xác d = 0,0095.

Giải:

a) Do 100 < d = 300 < 1,000 nên hàng thấp nhất mà d nhỏ hơn một đơn vị của hàng đó là hàng nghìn. Vì thế, ta quy tròn a đến hàng nghìn theo quy tắc quy tròn đã nêu ở trên. Vậy số quy tròn của a là 1,941,000.

b) Do 0,001 < d = 0,0095 < 0,01 nên hàng thấp nhất mà d nhỏ hơn một đơn vị của hàng đó là hàng phần trăm. Vì thế, ta quy tròn số a đến hàng phần trăm theo quy tắc quy tròn đã nêu ở trên. Vậy số quy tròn của a là 4,15.

Bài 3: Một tờ giấy A4 có dạng hình chữ nhật với chiều dài, chiều rộng lần lượt là 29,7 cm và 21 cm. Tính độ dài đường chéo của tờ giấy A4 đó và xác định độ chính xác của kết quả tìm được.

Giải:

Gọi x là độ dài đường chéo của tờ giấy A4 đã cho. Theo định lý Pythagore, ta có:

\(x = \sqrt {29,{7^2} + {{21}^2}}  = \sqrt {882,09 + 441}  = \sqrt {1323,09}  = 36,3743...\)

Nếu lấy giá trị gần đúng của x là 36,37 thì 36,37 < x < 36,375.

Suy ra | x – 36,37 | < 36,375 – 36,37 = 0,005.

Vậy độ dài đường chéo của tờ giấy A4 đã cho là \(x \approx 36,37\) và độ chính xác của kết quả tìm được là 0,005, hay nói cách khác \(x = 36,37 \pm 0,005\).


Bình chọn:
4.9 trên 7 phiếu
  • Giải mục I trang 21 SGK Toán 10 tập 2 - Cánh diều

    Hoá đơn tiền điện tháng 4/2021 của gia đình bác Mai là 763 951 đồng. Trong thực tế, bác Mai đã thanh toán (hoá đơn) bằng tiền mặt cho người thu tiền điện số tiền là 764 000 đồng. Tại sao bác Mai không thể thanh toán bằng tiền mặt cho người thu tiền điện số tiền chính xác là 763 951 đồng?

  • Giải mục II trang 22, 23, 24 SGK Toán 10 tập 2 - Cánh diều

    Một bồn hoa có dạng hình tròn với bán kính là 0,8 m. a) Viết công thức tính diện tích S của bồn hoa theo \(\pi \) và bán kính 0,8 m. b) Khi tính diện tích của bồn hoa, bạn Ngân lấy một giá trị gần đúng của m là 3,1 và được kết quả là:

  • Giải mục III trang 22, 23, 24 SGK Toán 10 tập 2 - Cánh diều

    Quy tròn số 3,141 đến hàng phần trăm rồi tính sai số tuyệt đối của số quy tròn. Hãy viết số quy tròn của số gần đúng a = 28,4156 biết Hãy tìm hiểu khối lượng của Trái Đất, Mặt Trời và viết kết quả dưới dạng số gần đúng.

  • Giải bài 1 trang 26 SGK Toán 10 tập 2 – Cánh diều

    Quy tròn số – 3,2475 đến hàng phần trăm. Số gần đúng nhận được có độ chính xác là bao nhiêu?

  • Giải bài 2 trang 26 SGK Toán 10 tập 2 – Cánh diều

    Viết số quy tròn của mỗi số gần đúng sau với độ chính xác d a) 30,2376 với d= 0,009, b) 2,3512082 với d=0,0008,

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Cánh diều - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí