Lý thuyết Hàm số liên tục - SGK Toán 11 Kết nối tri thức>
1. Hàm số liên tục tại 1 điểm
1. Hàm số liên tục tại 1 điểm
Cho hàm \(y = f(x)\) xác định trên khoảng \(\left( {a;b} \right)\)chứa điểm \({x_0}\). Hàm số \(f(x)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = f({x_0})\).
Hàm số không liên tục tại \({x_0}\) được gọi là gián đoạn tại điểm đó.
2. Hàm số liên tục trên một khoảng
- Hàm số \(y = f(x)\) được gọi là liên tục trên khoảng \(\left( {a;b} \right)\) nếu nó liên tục tại mọi điểm thuộc khoảng này.
- Hàm số \(y = f(x)\) được gọi là liên tục trên đoạn \(\left[ {a;b} \right]\)nếu nó liên tục trên khoảng \(\left( {a;b} \right)\) và \(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = f(a),\mathop {\lim }\limits_{x \to {b^ - }} f(x) = f(b)\).
*Nhận xét:
- Hàm số đa thức và hàm số \(y = {\mathop{\rm s}\nolimits} {\rm{inx}},y = c{\rm{osx}}\) liên tục trên \(\mathbb{R}\).
- Các hàm số \(y = \tan {\rm{x}},y = c{\rm{otx,}}y = \sqrt x \) và hàm phân thức hữu tỉ (thương của hai đa thức) liên tục trên tập xác định của chúng.
3. Một số tính chất cơ bản
Giả sử hai hàm số \(y = f(x)\) và \(y = g(x)\) liên tục tại điểm \({x_0}\). Khi đó:
a, Các hàm số \(y = f(x) \pm g(x)\) và \(y = f(x).g(x)\) liên tục tại điểm \({x_0}\).
b, Hàm số \(y = \frac{{f(x)}}{{g(x)}}\) liên tục tại điểm \({x_0}\)nếu \(g({x_0}) \ne 0\).
- Giải mục 1 trang 119, 120 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải mục 2 trang 120, 121 SGK Toán 11 tập 1 - Kết nối tri thức
- Giải mục 3 trang 121,122 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.14 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức
- Bài 5.15 trang 122 SGK Toán 11 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 11 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức
- Lý thuyết Đạo hàm cấp hai - Toán 11 Kết nối tri thức
- Lý thuyết Các quy tắc tính đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Định nghĩa và ý nghĩa của đạo hàm - Toán 11 Kết nối tri thức
- Lý thuyết Công thức nhân xác suất cho hai biến cố độc lập - Toán 11 Kết nối tri thức
- Lý thuyết Công thức cộng xác suất - Toán 11 Kết nối tri thức