Lý thuyết Bất phương trình bậc hai một ẩn - SGK Toán 10 Cánh diều>
I. Bất phương trình bậc hai một ẩn II. Giải bất phương trình bậc hai một ẩn
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Cánh diều
Toán - Văn - Anh - Lí - Hóa - Sinh
I. Bất phương trình bậc hai một ẩn
+) Bất phương trình bậc hai một ẩn có dạng \(a{x^2} + bx + c < 0\); \(a{x^2} + bx + c \le 0\); \(a{x^2} + bx + c > 0\); \(a{x^2} + bx + c \ge 0\) (\(a,b,c \in \mathbb{R}\); \(a \ne 0\)).
+) Số \({x_0} \in \mathbb{R}\) thỏa mãn BPT được gọi là nghiệm. Tập hợp các nghiệm \({x_0}\) như thế còn được gọi là tập nghiệm của BPT bậc hai đã cho.
II. Giải bất phương trình bậc hai một ẩn
1. Giải bằng cách xét dấu tam thức bậc hai
Bước 1: Xác định dấu của a và tìm nghiệm của f(x) (nếu có).
Bước 2: Sử dụng định lí về dấu của tam thức bậc hai để tìm tập hợp những giá trị x sao cho f(x) thỏa mãn yêu cầu đề bài.
+ \(\Delta < 0\): f(x) cùng dấu với a, \(\forall x \in \mathbb{R}\).
+ \(\Delta = 0\): f(x) cùng dấu với a, \(\forall x \in \mathbb{R}{\rm{\backslash }}\left\{ {\frac{{ - b}}{{2a}}} \right\}\).
+ \(\Delta > 0\): f(x) có 2 nghiệm \({x_1},{x_2}({x_1} < {x_2})\).
2. Giải bằng cách sử dụng đồ thị
+) Nghiệm của BPT \(a{x^2} + bx + c > 0\) là tập hợp x ứng với phần Parabol \(y = a{x^2} + bx + c\) nằm phía trên trục hoành.
+) Nghiệm của BPT \(a{x^2} + bx + c < 0\) là tập hợp x ứng với phần Parabol \(y = a{x^2} + bx + c\) nằm phía dưới trục hoành.
III. Ứng dụng của bất phương trình bậc hai một ẩn
Bất phương trình bậc hai một ẩn có nhiều ứng dụng, chẳng hạn: tính toán lợi nhuận trong kinh doanh, tính toán điểm rơi trong pháo binh,...
Các bài khác cùng chuyên mục
- Lý thuyết Ba đường conic - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường tròn - SGK Toán 10 Cánh diều
- Lý thuyết Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Biểu thức tọa độ của các phép toán vecto - SGK Toán 10 Cánh diều
- Lý thuyết Ba đường conic - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường tròn - SGK Toán 10 Cánh diều
- Lý thuyết Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Phương trình đường thẳng - SGK Toán 10 Cánh diều
- Lý thuyết Biểu thức tọa độ của các phép toán vecto - SGK Toán 10 Cánh diều




