Giải mục 2 trang 76, 77 SGK Toán 9 tập 1 - Cùng khám phá>
Trong Hình 4.6, tam giác ABC là tam giác gì? Xác định số đo và các tỉ số lượng giác của góc B.
HĐ2
Trả lời câu hỏi Hoạt động 2 trang 76 SGK Toán 9 Cùng khám phá
Trong Hình 4.6, tam giác ABC là tam giác gì? Xác định số đo và các tỉ số lượng giác của góc B.
Phương pháp giải:
Trong tam giác vuông có góc nhọn \(\alpha \), khi đó:
+ Tỉ số giữa cạnh đối và cạnh huyền được gọi là \(\sin \alpha \).
+ Tỉ số giữa cạnh kề và cạnh huyền được gọi là \(\cos \alpha \).
+ Tỉ số giữa cạnh đối và cạnh kề được gọi là \(\tan \alpha \).
+ Tỉ số giữa cạnh kề và cạnh đối được gọi là \(\cot \alpha \).
Lời giải chi tiết:
Tam giác ABC vuông tại C, \(CB = AC = 1\) nên tam giác ABC vuông cân tại C. Do đó, \(\widehat B = {45^o}\).
Tam giác ABC vuông tại C nên \(A{B^2} = B{C^2} + A{C^2} = {1^2} + {1^2} = 2\) (Định lí Pythagore).
Do đó, \(AB = \sqrt 2 \).
Suy ra, \(\sin B = \frac{{AC}}{{AB}} = \frac{1}{{\sqrt 2 }}\), \(\cos B = \frac{{BC}}{{AB}} = \frac{1}{{\sqrt 2 }}\), \(\tan B = \frac{{AC}}{{BC}} = 1\), \(\cot B = \frac{{BC}}{{AC}} = 1\).
HĐ3
Trả lời câu hỏi Hoạt động 3 trang 77 SGK Toán 9 Cùng khám phá
Trong Hình 4.7, tam giác ABC là tam giác gì? Xác định số đo và các tỉ số lượng giác của góc B và góc \({A_1}\).
Phương pháp giải:
Trong tam giác vuông có góc nhọn \(\alpha \), khi đó:
+ Tỉ số giữa cạnh đối và cạnh huyền được gọi là \(\sin \alpha \).
+ Tỉ số giữa cạnh kề và cạnh huyền được gọi là \(\cos \alpha \).
+ Tỉ số giữa cạnh đối và cạnh kề được gọi là \(\tan \alpha \).
+ Tỉ số giữa cạnh kề và cạnh đối được gọi là \(\cot \alpha \).
Lời giải chi tiết:
Tam giác ABC có \(AB = BC = CA = 2\) nên tam giác ABC đều.
Do đó, AH là đường cao đồng thời là đường trung tuyến.
Do đó, \(BH = \frac{1}{2}BC = \frac{1}{2}.2 = 1\).
Tam giác AHB vuông tại H nên \(A{H^2} + H{B^2} = A{B^2}\) (Định lí Pythagore).
Suy ra: \(A{H^2} = A{B^2} - B{H^2} = {2^2} - {1^2} = 3\).
Do đó, \(AH = \sqrt 3 \)
Do đó, \(\sin B = \frac{{AH}}{{AB}} = \frac{{\sqrt 3 }}{2}\), \(\cos B = \frac{{BH}}{{AB}} = \frac{1}{2}\), \(\tan B = \frac{{AH}}{{BH}} = \frac{{\sqrt 3 }}{1} = \sqrt 3 \), \(\cot B = \frac{{BH}}{{AH}} = \frac{1}{{\sqrt 3 }}\).
\(\sin {A_1} = \frac{{BH}}{{AB}} = \frac{1}{2}\), \(\cos {A_1} = \frac{{AH}}{{AB}} = \frac{{\sqrt 3 }}{2}\), \(\tan {A_1} = \frac{{BH}}{{AH}} = \frac{1}{{\sqrt 3 }}\), \(\cot {A_1} = \frac{{AH}}{{BH}} = \frac{{\sqrt 3 }}{1} = \sqrt 3 \).
Tam giác ABC đều nên \(\widehat B = {60^o}\).
Tam giác AHB vuông tại H nên \(\widehat {{A_1}} = {90^o} - \widehat B = {30^o}\).
LT2
Trả lời câu hỏi Luyện tập 2 trang 77 SGK Toán 9 Cùng khám phá
Trong Hình 4.9, hãy tính các tỉ số \(\frac{{PN}}{{PQ}}\) và \(\frac{{PN}}{{PM}}\), từ đó tìm \(\frac{{PQ}}{{PM}}\).
Phương pháp giải:
+ Xét tam giác NPQ vuông tại N có: \(\sin NQP = \frac{{PN}}{{PQ}}\), từ đó tính PQ theo PN và sin NQP.
+ Xét tam giác NPM vuông tại N có: \(\sin M = \frac{{NP}}{{MP}}\), từ đó tính MP theo PN và sinM.
+ Do đó, tính được tỉ số \(\frac{{PQ}}{{PM}}\)
Lời giải chi tiết:
Xét tam giác NPQ vuông tại N có:
\(\sin NQP = \frac{{PN}}{{PQ}}\) nên \(PQ = PN.\sin NQP = PN.\sin {60^o} = \frac{{\sqrt 3 }}{2}PN\).
Xét tam giác NPM vuông tại N có:
\(\sin M = \frac{{NP}}{{MP}}\), nên \(MP = PN.\sin M = PN.\sin {45^o} = \frac{{\sqrt 2 }}{2}PN\).
Do đó, \(\frac{{PQ}}{{PM}} = \frac{{\frac{{\sqrt 3 }}{2}PN}}{{\frac{{\sqrt 2 }}{2}PN}} = \frac{{\sqrt 6 }}{2}\)
- Giải mục 3 trang 78 SGK Toán 9 tập 1 - Cùng khám phá
- Giải mục 4 trang 79, 80, 81 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 4.1 trang 82 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 4.2 trang 82 SGK Toán 9 tập 1 - Cùng khám phá
- Giải bài tập 4.3 trang 82 SGK Toán 9 tập 1 - Cùng khám phá
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá
- Lý thuyết Cách tính xác suất của biến cố trong một số mô hình đơn giản Toán 9 Cùng khám phá
- Lý thuyết Phép thử ngẫu nhiên. Không gian mẫu Toán 9 Cùng khám phá
- Lý thuyết Tần số ghép nhóm, tần số tương đối ghép nhóm Toán 9 Cùng khám phá
- Lý thuyết Tần số tương đối Toán 9 Cùng khám phá
- Lý thuyết Tần số Toán 9 Cùng khám phá