 Toán 10, giải toán lớp 10 chân trời sáng tạo
                                                
                            Toán 10, giải toán lớp 10 chân trời sáng tạo
                         Bài 3. Phương trình quy về phương trình bậc hai Toán 10..
                                                        Bài 3. Phương trình quy về phương trình bậc hai Toán 10..
                                                    Giải mục 2 trang 16, 17 SGK Toán 10 tập 2 - Chân trời sáng tạo>
Cho tam giác OAB và OBC lần lượt vuông tại A và B như hình 1. Các cạnh AB và BC bằng nhau và ngắn hơn OB là 1 cm. Hãy biểu diễn độ dài OC và OA qua OB, từ đó xác định OB để:
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Chân trời sáng tạo
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
HĐ Khám phá 2
Lời giải cho phương trình \(\sqrt { - {x^2} + x + 1} = x\) như sau đúng hai sai?
\(\)\(\sqrt { - {x^2} + x + 1} = x\)
\( \Rightarrow - {x^2} + x + 1 = {x^2}\) (bình phương cả hai vế để làm mất dấu căn)
\( \Rightarrow - 2{x^2} + x + 1 = 0\) (chuyển vế, rút gọn)
\( \Rightarrow x = 1\) hoặc \(x = - \frac{1}{2}\) (giải phương trình bậc hai)
Vậy phương trình đã cho có hai nghiệm là 1 và \( - \frac{1}{2}\)
Phương pháp giải:
Thay nghiệm tìm được vào phương trình ban đầu ta có:
+) Thay \(x = 1\) vào phương trình \(\sqrt { - {x^2} + x + 1} = x\) ta thấy thảo mãn phương trình
+) Thay \(x = - \frac{1}{2}\) vào \(\sqrt { - {x^2} + x + 1} = x\) ta thấy không thỏa mãn phương trình
Vậy nghiệm của phương trình là \(x = 1\), suy ra lời giải như trên là sai.
Thực hành 2
Giải phương trình \(\sqrt {3{x^2} + 27x - 41} = 2x + 3\)
Phương pháp giải:
Bước 1: Bình phương hai vế của phương trình để làm mất dấu căn
Bước 2: Chuyển vế, rút gọn đưa về phương trình bậc hai một ẩn
Bước 3: Giải phương trình nhận được ở bước 2
Bước 4: Thử lại và kết luận
Lời giải chi tiết:
Bình phương hai vế của phương trình đã cho, ta được:
\(3{x^2} + 27x - 41 = {\left( {2x + 3} \right)^2}\)
\( \Rightarrow 3{x^2} + 27x - 41 = 4{x^2} + 12x + 9\)
\( \Rightarrow {x^2} - 15x + 50 = 0\)
\( \Rightarrow x = 5\) và \(x = 10\)
Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {3{x^2} + 27x - 41} = 2x + 3\) ta thấy cả hai nghiệm đều thỏa mãn phương trình
Vậy nghiệm của phương trình đã cho là \(x = 5\) và \(x = 10\)
Vận dụng
Cho tam giác OAB và OBC lần lượt vuông tại A và B như hình 1. Các cạnh AB và BC bằng nhau và ngắn hơn OB là 1 cm. Hãy biểu diễn độ dài OC và OA qua OB, từ đó xác định OB để:
a) \(OC = 3OA;\)
b) \(OC = \frac{5}{4}OB\)

Phương pháp giải:
Bước 1: Sử dụng giả thiết và áp dụng định lý pitago để biểu diễn độ dài OC và OA qua OB
Bước 2: Lập phương trình theo giả thiết \(OC = 3OA;\)\(OC = \frac{5}{4}OB\)
Bước 3: Giải phương trình
Lời giải chi tiết:
Gọi độ dài cạnh OB là x cm \(\left( {x > 0} \right)\)
Theo giả thiết ta có \(AB = BC = OB - 1 = x - 1\)
Áp dụng định lý pitago trong tam giác vuông OAB và OBC ta có:
\(OC = \sqrt {O{B^2} + B{C^2}} = \sqrt {{x^2} + {{\left( {x - 1} \right)}^2}} = \sqrt {2{x^2} - 2x + 1} \)
\(OA = \sqrt {O{B^2} - A{B^2}} = \sqrt {{x^2} - {{\left( {x - 1} \right)}^2}} = \sqrt {2x - 1} \)
a) \(OC = 3OA \Rightarrow \sqrt {2{x^2} - 2x + 1} = 3\sqrt {2x - 1} \)
\(\begin{array}{l} \Rightarrow 2{x^2} - 2x + 1 = 9\left( {2x - 1} \right)\\ \Rightarrow 2{x^2} - 20x + 10 = 0\end{array}\)
\( \Rightarrow \)\(x = 5 - 2\sqrt 5 \) và \(x = 5 + 2\sqrt 5 \)
Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {2{x^2} - 2x + 1} = 3\sqrt {2x - 1} \) ta thấy cả hai đều thỏa mãn phương trình
Vậy khi \(OB = 5 - 2\sqrt 5 \) hoặc \(OB = 5 + 2\sqrt 5 \)thì \(OC = 3OA\)
b) \(OC = \frac{5}{4}OB \Rightarrow \sqrt {2{x^2} - 2x + 1} = \frac{5}{4}x\)
\(\begin{array}{l} \Rightarrow 2{x^2} - 2x + 1 = \frac{{25}}{{16}}{x^2}\\ \Rightarrow \frac{7}{{16}}{x^2} - 2x + 1 = 0\end{array}\)\(\)
\( \Rightarrow x = \frac{4}{7}\) hoặc \(x = 4\)
Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {2{x^2} - 2x + 1} = \frac{5}{4}x\) ta thấy cả hai nghiệm đều thỏa mãn phương trình
Vậy khi \(OB = \frac{4}{7}\) hoặc \(OB = 4\) (cm) thì \(OC = \frac{5}{4}OB\)
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải bài 1 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải bài 2 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải bài 3 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải bài 4 trang 17 SGK Toán 10 tập 2 – Chân trời sáng tạo
- Giải mục 1 trang 15, 16 SGK Toán 10 tập 2 - Chân trời sáng tạo
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Chân trời sáng tạo - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ - SGK Toán 10 CTST
- Lý thuyết Xác suất của biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Không gian mẫu và biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ - SGK Toán 10 CTST
- Lý thuyết Xác suất của biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Không gian mẫu và biến cố - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Ba đường conic trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
- Lý thuyết Đường tròn trong mặt phẳng tọa độ - SGK Toán 10 Chân trời sáng tạo
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            