 Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
                                                
                            Toán 10, giải toán lớp 10 kết nối tri thức với cuộc sống
                         Bài 19. Phương trình đường thẳng Toán 10 Kết nối tri thức
                                                        Bài 19. Phương trình đường thẳng Toán 10 Kết nối tri thức
                                                    Giải mục 1 trang 31, 32 SGK Toán 10 tập 2 - Kết nối tri thức>
Trong mặt phẳng tọa độ, cho tam giác có ba đỉnh A(1; 3), B(-1;- 1), C(5 - 3). Lập phương trình tổng quát của đường cao kẻ từ A của tam giác ABC. Hãy chỉ ra một vectơ pháp tuyển của đường thẳng
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
HĐ1
Cho vectơ \(\overrightarrow n \ne \overrightarrow 0 \) và điểm A. Tìm tập hợp những điểm M sao cho \(\overrightarrow {AM} \) vuông góc với \(\overrightarrow n \).
Lời giải chi tiết:
Tập hợp tất cả những điểm M để \(\overrightarrow {AM} \) vuông góc với \(\overrightarrow n \) là đường thẳng qua A và vuông góc với giá của vectơ \(\overrightarrow n \).
HĐ2
Trong mặt phẳng tọa độ, cho đường thẳng \(\Delta \) đi qua điểm \(A\left( {{x_o};{y_o}} \right)\) và có vectơ pháp tuyến \(\overrightarrow n {\rm{ }} = \left( {a;{\rm{ }}b} \right)\). Chứng minh rằng điểm \(M\left( {x;y} \right)\) thuộc \(\Delta \) khi và chỉ khi:
\(a\left( {x - {x_o}} \right) + b\left( {y - {y_o}} \right) = 0\).
Lời giải chi tiết:
Gọi \(M\left( {x;y} \right)\)
Ta có: \(\overrightarrow {AM} = \left( {x - {x_o};y - {y_o}} \right),\overrightarrow n = \left( {a;b} \right)\)
\( M \in \Delta \Leftrightarrow \overrightarrow {AM} \bot \overrightarrow n \)
Hay \(\overrightarrow {AM} .\overrightarrow n = 0 \Leftrightarrow a\left( {x - {x_o}} \right) + b\left( {y - {y_o}} \right) = 0\) (ĐPCM).
Luyện tập 1
Trong mặt phẳng tọa độ, cho tam giác có ba đỉnh A(1; 3), B(-1;- 1), C(5 - 3). Lập phương trình tổng quát của đường cao kẻ từ A của tam giác ABC.
Phương pháp giải:
\(\overrightarrow {BC} \) là vecto pháp tuyến của đường thẳng AH.
Lời giải chi tiết:
Đường cao AH đi qua điểm \(A\left( { - 1;5} \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_{AH}}} = \overrightarrow {BC} = \left( {4; - 2} \right)\).
Phương trình tổng quát của AH là \(4\left( {x + 1} \right) - 2\left( {y - 5} \right) = 0 \Leftrightarrow 2x - y + 7 = 0\).
Luyện tập 2
Hãy chỉ ra một vectơ pháp tuyển của đường thẳng \(\Delta :y = 3x + 4\).
Lời giải chi tiết:
Ta có \(\Delta :y = 3x + 4 \Leftrightarrow \Delta :3x - y + 4 = 0\)
Vậy vectơ pháp tuyến của \(\Delta \) là \(\overrightarrow n = \left( {3; - 1} \right)\).
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Giải mục 2 trang 32, 33, 34 SGK Toán 10 tập 2 - Kết nối tri thức
- Giải bài 7.1 trang 34 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.2 trang 34 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.3 trang 34 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.4 trang 34 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
- Lý thuyết Thực hành tính xác suất theo định nghĩa cổ điển - SGK Toán 10 Kết nối tri thức
- Lý thuyết Biến cố và định nghĩa cổ điển của xác suất - SGK Toán 10 Kết nối tri thức
- Lý thuyết Nhị thức Newton - SGK Toán 10 Kết nối tri thức
- Lý thuyết Hoán vị, chỉnh hợp và tổ hợp - SGK Toán 10 Kết nối tri thức
- Lý thuyết Quy tắc đếm - SGK Toán 10 Kết nối tri thức
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            