Giải bài tập 5.6 trang 39 SGK Toán 12 tập 2 - Kết nối tri thức


Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):x + y + z + 2 = 0,\left( Q \right):x + y + z + 6 = 0\). Chứng minh rằng hai mặt phẳng đã cho song song với nhau và tính khoảng cách giữa hai mặt phẳng đó.

Đề bài

 

 

Trong không gian Oxyz, cho hai mặt phẳng \(\left( P \right):x + y + z + 2 = 0,\left( Q \right):x + y + z + 6 = 0\). Chứng minh rằng hai mặt phẳng đã cho song song với nhau và tính khoảng cách giữa hai mặt phẳng đó. 

 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về điều kiện để hai mặt phẳng song song để chứng minh: Trong không gian Oxyz, cho hai mặt phẳng \(\left( \alpha  \right):Ax + By + Cz + D = 0\), \(\left( \beta  \right):A'x + B'y + C'z + D' = 0\) với các vectơ pháp tuyến \(\overrightarrow n  = \left( {A;B;C} \right),\overrightarrow {n'}  = \left( {A';B';C'} \right)\) tương ứng. Khi đó, \(\left( \alpha  \right)//\left( \beta  \right) \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {n'}  = k\overrightarrow n \\D' \ne kD\end{array} \right.\) với k nào đó.

Sử dụng kiến thức về khoảng cách từ một điểm đến một mặt phẳng để tính: Trong không gian Oxyz, khoảng cách từ điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) đến mặt phẳng \(\left( P \right):Ax + By + Cz + D = 0\) là \(d\left( {M,\left( P \right)} \right) = \frac{{\left| {A{x_0} + B{y_0} + C{z_0} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).

 

Lời giải chi tiết

a) Mặt phẳng (P) có một vectơ pháp tuyến là: \(\overrightarrow {{n_P}}  = \left( {1;1;1} \right)\), mặt phẳng (Q) có một vectơ pháp tuyến là: \(\overrightarrow {{n_Q}}  = \left( {1;1;1} \right)\). Vì \(\overrightarrow {{n_P}}  = \overrightarrow {{n_Q}} \) và \(2 \ne 6\) nên (P) và (Q) song song với nhau.

b) Lấy điểm A(0; 0; -2) thuộc mặt phẳng (P). Ta có: \(d\left( {A,\left( Q \right)} \right) = \frac{{\left| {0 + 0 - 2 + 6} \right|}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} = \frac{{4\sqrt 3 }}{3}\)

Vì (P) và (Q) song song với nhau nên \(d\left( {\left( P \right),\left( Q \right)} \right) = d\left( {A,\left( Q \right)} \right) = \frac{{4\sqrt 3 }}{3}\).

 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí