Giải bài tập 4.14 trang 25 SGK Toán 12 tập 2 - Kết nối tri thức>
Tính diện tích của hình phẳng được tô màu trong Hình 4.29.
Đề bài
Tính diện tích của hình phẳng được tô màu trong Hình 4.29.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về diện tích hình phẳng giới hạn bởi hai đồ thị hàm số và đường thẳng \(x = a,x = b\) để tính: Diện tích S của hình phẳng giới hạn đồ thị của hai hàm số f(x), g(x) liên tục trên đoạn [a; b] và hai đường thẳng \(x = a,x = b\), được tính bằng công thức \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).
Lời giải chi tiết
Diện tích hình phẳng cần tính là:
\(S = \int\limits_0^4 {\left| {5x - {x^2} - x} \right|dx} = \int\limits_0^4 {\left| { - {x^2} + 4x} \right|dx} = \int\limits_0^4 {\left( { - {x^2} + 4x} \right)dx} = \left( {\frac{{ - {x^3}}}{3} + 2{x^2}} \right)\left| \begin{array}{l}4\\0\end{array} \right. = \frac{{ - {4^3}}}{3} + {2.4^2} = \frac{{32}}{3}\)
- Giải bài tập 4.15 trang 25 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.16 trang 25 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.17 trang 26 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.18 trang 26 SGK Toán 12 tập 2 - Kết nối tri thức
- Giải bài tập 4.19 trang 26 SGK Toán 12 tập 2 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức