Giải bài tập 3.11 trang 85 SGK Toán 12 tập 1 - Kết nối tri thức>
Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau: Nhóm chứa tứ phân vị thứ ba là A. \(\left[ {15;16} \right)\). B. \(\left[ {16;17} \right)\). C. \(\left[ {17;18} \right)\). D. \(\left[ {18;19} \right)\).
Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa
Đề bài
Một vườn thú ghi lại tuổi thọ (đơn vị: năm) của 20 con hổ và thu được kết quả như sau:
Nhóm chứa tứ phân vị thứ ba là
A. \(\left[ {15;16} \right)\).
B. \(\left[ {16;17} \right)\).
C. \(\left[ {17;18} \right)\).
D. \(\left[ {18;19} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về tính chất về nhóm chứa tứ phân vị của mẫu số liệu để tính: Ta có thể xác định nhóm chứa tứ phân vị thứ r nhờ tính chất: có khoảng \(\left( {\frac{{r.n}}{4}} \right)\) giá trị nhỏ hơn tứ phân vị này.
Lời giải chi tiết
Ta có: \(\frac{{3.20}}{4} = 15\) và \(1 + 3 + 8 < 15 < 1 + 3 + 8 + 6\) tứ phân vị thứ ba thuộc nhóm \(\left[ {17;18} \right)\)
Chọn C
- Giải bài tập 3.12 trang 85 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 3.13 trang 85 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 3.14 trang 86 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 3.15 trang 86 SGK Toán 12 tập 1 - Kết nối tri thức
- Giải bài tập 3.16 trang 86 SGK Toán 12 tập 1 - Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay
Các bài khác cùng chuyên mục
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức
- Lý thuyết Công thức xác suất toàn phần và công thức Bayes Toán 12 Kết nối tri thức
- Lý thuyết Xác suất có điều kiện Toán 12 Kết nối tri thức
- Lý thuyết Phương trình mặt cầu Toán 12 Kết nối tri thức
- Lý thuyết Công thức tính góc trong không gian Toán 12 Kết nối tri thức
- Lý thuyết Phương trình đường thẳng Toán 12 Kết nối tri thức