Giải bài tập 1.36 trang 42 SGK Toán 12 tập 1 - Kết nối tri thức


Tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 2}}{{x + 2}}\) là A. \(y = - 2\). B. \(y = 1\). C. \(y = x + 2\). D. \(y = x\).

Đề bài

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 2}}{{x + 2}}\) là

A. \(y =  - 2\).

B. \(y = 1\).

C. \(y = x + 2\).

D. \(y = x\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về khái niệm đường tiệm cận xiên để tìm tiệm cận xiên: Đường thẳng \(y = ax + b\left( {a \ne 0} \right)\) gọi là đường tiệm cận xiên (gọi tắt là tiệm cận xiên) của đồ thị hàm số \(y = f\left( x \right)\) nếu \(\mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\) hoặc \(\mathop {\lim }\limits_{x \to  - \infty } \left[ {f\left( x \right) - \left( {ax + b} \right)} \right] = 0\).

Lời giải chi tiết

Ta có: \(y = \frac{{{x^2} + 2x - 2}}{{x + 2}} = x - \frac{2}{{x + 2}}\)

Lại có: \(\mathop {\lim }\limits_{x \to  + \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to  + \infty } \left[ {x - \frac{2}{{x + 2}} - x} \right] = \mathop {\lim }\limits_{x \to  + \infty }  - \frac{2}{{x + 2}} = 0\)

\(\mathop {\lim }\limits_{x \to  - \infty } \left( {y - x} \right) = \mathop {\lim }\limits_{x \to  - \infty } \left[ {x - \frac{2}{{x + 2}} - x} \right] = \mathop {\lim }\limits_{x \to  - \infty }  - \frac{2}{{x + 2}} = 0\)

Do đó, đường thẳng \(y = x\) là tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 2}}{{x + 2}}\).

Chọn D


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài tập 1.37 trang 43 SGK Toán 12 tập 1 - Kết nối tri thức

    Cho hàm số \(y = f\left( x \right)\) xác định trên \[\mathbb{R}\backslash \left\{ {1;3} \right\}\], liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau: Khẳng định nào sau đây là sai? A. Đường thẳng \(y = 1\) là tiệm cận ngang của đồ thị hàm số đã cho. B. Đường thẳng \(y = - 1\) là tiệm cận ngang của đồ thị hàm số đã cho. C. Đường thẳng \(x = 3\) là tiệm cận đứng của đồ thị hàm số đã cho. D. Đường thẳng \(x = 1\) là tiệm cận đứng của đồ thị hàm số đã cho.

  • Giải bài tập 1.38 trang 43 SGK Toán 12 tập 1 - Kết nối tri thức

    Đồ thị trong Hình 1.37 là đồ thị của hàm số: A. \(y = \frac{{x + 2}}{{x + 1}}\). B. \(y = \frac{{2x + 1}}{{x + 1}}\). C. \(y = \frac{{x - 1}}{{x + 1}}\). D. \(y = \frac{{x + 3}}{{1 - x}}\).

  • Giải bài tập 1.39 trang 43 SGK Toán 12 tập 1 - Kết nối tri thức

    Đồ thị trong Hình 1.38 là đồ thị của hàm số: A. \(y = x - \frac{1}{{x + 1}}\). B. \(y = \frac{{2x + 1}}{{x + 1}}\). C. \(y = \frac{{{x^2} - x + 1}}{{x + 1}}\). D. \(y = \frac{{{x^2} + x + 1}}{{x + 1}}\).

  • Giải bài tập 1.40 trang 43 SGK Toán 12 tập 1 - Kết nối tri thức

    Xét chiều biến thiên và tìm các cực trị (nếu có) của các hàm số sau: a) (y = {x^3} - 3{x^2} + 3x - 1); b) (y = {x^4} - 2{x^2} - 1); c) (y = frac{{2x - 1}}{{3x + 1}}); d) (y = frac{{{x^2} + 2x + 2}}{{x + 1}}).

  • Giải bài tập 1.41 trang 44 SGK Toán 12 tập 1 - Kết nối tri thức

    Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau: a) \(y = \frac{{2x + 1}}{{3x - 2}}\) trên nửa khoảng \(\left[ {2; + \infty } \right)\); b) \(y = \sqrt {2 - {x^2}} \);

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Kết nối tri thức - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí