Giải bài 8.29 trang 59 SBT toán 10 - Kết nối tri thức


phòng thi có 4 hàng bàn ghế, mỗi hàng có 5 bộ bàn ghế. Có 10 thí sinh nam và 10 thí sinh nữ được xếp vào phòng thi đó.

Đề bài

Một phòng thi có 4 hàng bàn ghế, mỗi hàng có 5 bộ bàn ghế. Có 10 thí sinh nam và 10 thí sinh nữ được xếp vào phòng thi đó. Người ta muốn xếp các thí sinh, mỗi thí sinh ngồi một bàn, sao cho mỗi hàng chỉ xếp các thí sinh cùng giới tính và thí sinh ở hai hàng liên tiếp thì khác giới tính với nhau. Hỏi có bao nhiêu cách xếp chỗ cho các thí sinh?

Phương pháp giải - Xem chi tiết

    Áp dụng quy tắc cộng, quy tắc nhân và công thức hoán vị.

Lời giải chi tiết

Đánh số các hàng từ trên xuống dưới lần lượt là 1, 2, 3, 4 ta có 2 phương án:

-       Phương án 1: Xếp các thí sinh nam vào hàng 1 và 3, còn các thí sinh nữ vào hàng 2, 4.

Xếp 10 thí sinh nam vào 10 chỗ ở hàng 1 và 3 có số cách là:

       10!= 3 628 800 cách

Xếp 10 thí sinh nữ vào 10 chỗ ở hàng 2 và 4 có số cách là:

       10!= 3 628 800 cách

Có tổng số cách sắp xếp theo phương án 1 là:

              10!. 10! cách

-       Phương án 2: Xếp các thí sinh nam vào hàng 2 và 4, còn các thí sinh nữ vào hàng 1, 3.

Tương tự phương án 1, phương án 2 có 10!. 10! cách

Theo quy tắc cộng, số cách sắp xếp theo yêu cầu là:

        10!. 10!+ 10!. 10!= 26 336 378 880 000 cách


Bình chọn:
3.6 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí