Giải bài 8 trang 90 vở thực hành Toán 9 tập 2


Cho tam giác nhọn ABC cân tại đỉnh A. Đường tròn đường kính BC cắt các cạnh AB, AC của tam giác ABC lần lượt tại F và E. a) Cho BE cắt CF tại H. Chứng minh rằng AH vuông góc với BC. b) Chứng minh rằng EF song song với BC.

Đề bài

Cho tam giác nhọn ABC cân tại đỉnh A. Đường tròn đường kính BC cắt các cạnh AB, AC của tam giác ABC lần lượt tại F và E.

a) Cho BE cắt CF tại H. Chứng minh rằng AH vuông góc với BC.

b) Chứng minh rằng EF song song với BC.

Phương pháp giải - Xem chi tiết

a) Chứng minh \(BE \bot AC,CF \bot AB\), suy ra H là trực tâm tam giác ABC nên AH vuông góc với BC.

b) Chứng minh \(\widehat {EFC} = \widehat {EBC}\), \(\widehat {EBC} = {90^o} - \widehat {ECB} = {90^o} - \widehat {FBC} = \widehat {FCB}\) nên \(\widehat {EFC} = \widehat {FCB}\), suy ra EF//BC.

Lời giải chi tiết

a) Gọi O là đường tròn đường kính BC. Vì \(\widehat {BEC}\) và \(\widehat {CFB}\) là các góc nội tiếp của (O) cùng chắn nửa đường tròn nên \(\widehat {BEC} = \widehat {CFB} = {90^o}\). Suy ra \(BE \bot AC,CF \bot AB\). Do đó H là trực tâm của tam giác ABC. Vì vậy AH vuông góc với BC.

b) Vì \(\widehat {EFC}\) và \(\widehat {EBC}\) là các góc nội tiếp của (O) cùng chắn  nên \(\widehat {EFC} = \widehat {EBC}\) (1)

Mặt khác, tam giác ABC cân tại A và các tam giác BCF, CBE lần lượt vuông tại F và E nên \(\widehat {EBC} = {90^o} - \widehat {ECB} = {90^o} - \widehat {FBC} = \widehat {FCB}\). (2)

Từ (1) và (2) ta suy ra \(\widehat {EFC} = \widehat {FCB}\). Do đó EF//BC (hai góc ở vị trí so le trong)


Bình chọn:
4.9 trên 7 phiếu
  • Giải bài 7 trang 89, 90 vở thực hành Toán 9 tập 2

    Cho các điểm A, B, C, D trên đường tròn (O) như hình bên. Biết rằng CD là đường kính của (O) và (widehat {BOC} = {120^o}), hãy tính số đo các góc CAD và CDB.

  • Giải bài 6 trang 89 vở thực hành Toán 9 tập 2

    Trên sân bóng, khi quả bóng được đặt tại điểm phạt đền thì có góc sút bằng ({36^o}) và quả bóng cách mỗi cọc gôn 11,6m như hình dưới đây. Hỏi khi quả bóng đặt ở vị trí cách điểm phạt đền 11,6m thì góc sút bằng bao nhiêu?

  • Giải bài 5 trang 88, 89 vở thực hành Toán 9 tập 2

    Cho đường tròn (O), đường kính AB và điểm S nằm ngoài (O). Cho hai đường thẳng SA, SB lần lượt cắt (O) tại M (khác A), N (khác B). Gọi P là giao điểm của BM và AN như hình bên. Chứng minh rằng SP vuông góc với AB.

  • Giải bài 4 trang 88 vở thực hành Toán 9 tập 2

    Cho đường tròn (O) và hai dây cung AB, CD cắt nhau tại điểm I nằm trong (O) như hình bên. a) Biết rằng (widehat {AOC} = {60^o},widehat {BOD} = {80^o}). Tính số đo của góc AID. b) Chứng minh rằng (IA.IB = IC.ID).

  • Giải bài 3 trang 88 vở thực hành Toán 9 tập 2

    Cho đường tròn (O) và hai dây cung AC, BD cắt nhau tại X như hình bên. Tính số đo góc AXB biết rằng (widehat {ADB} = {30^o},widehat {DBC} = {50^o}).

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí