Giải bài 8 trang 127 vở thực hành Toán 9 tập 2


Một chiếc kem ốc quế gồm hai phần: Phần phía dưới là một hình nón có chiều cao gấp đôi bán kính đáy, phần trên là một nửa hình cầu có đường kính bằng đường kính đáy của hình nón phía dưới. Thể tích phần kem phía trên bằng (200c{m^3}). Tính thể tích của cả chiếc kem.

Đề bài

Một chiếc kem ốc quế gồm hai phần: Phần phía dưới là một hình nón có chiều cao gấp đôi bán kính đáy, phần trên là một nửa hình cầu có đường kính bằng đường kính đáy của hình nón phía dưới. Thể tích phần kem phía trên bằng \(200c{m^3}\). Tính thể tích của cả chiếc kem.

Phương pháp giải - Xem chi tiết

+ Ta có \({V_1} = \frac{1}{2}.\frac{4}{3}\pi {R^3} = 200\left( {c{m^3}} \right)\), từ đó tính được R.

+ Tính thể tích của phần kem phía dưới.

+ Thể tích chiếc kem bằng tổng thể tích phía trên và phía dưới chiếc kem.

Lời giải chi tiết

Thể tích phần kem phía trên là \(200c{m^3}\) nên:

\({V_1} = \frac{1}{2}.\frac{4}{3}\pi {R^3} = 200\left( {c{m^3}} \right)\),

suy ra \(R = \sqrt[3]{{\frac{{300}}{\pi }}}cm\).

Thể tích phần kem phía dưới là:

\({V_2} = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi {R^2}.2R \\= \frac{2}{3}\pi {R^3} = \frac{2}{3}\pi .\frac{{300}}{\pi } = 200\left( {c{m^3}} \right).\)

Thể tích cả chiếc kem là: \(200 + 200 = 400\left( {c{m^3}} \right)\).


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Kết nối tri thức - Xem ngay

Tham Gia Group 2K10 Ôn Thi Vào Lớp 10 Miễn Phí