Giải bài 7.11 trang 41 SGK Toán 10 – Kết nối tri thức>
Chứng minh rằng hai đường thẳng d: y = ax + b
Tổng hợp đề thi giữa kì 1 lớp 10 tất cả các môn - Kết nối tri thức
Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa...
Đề bài
Chứng minh rằng hai đường thẳng d: y = ax + b (\(a{\rm{ }} \ne {\rm{ }}0\) ) và d': y=a'x + b' (\(a'{\rm{ }} \ne {\rm{ }}0\)) vuông góc với nhau khi và chỉ khi aa' = -1.
Phương pháp giải - Xem chi tiết
Chuyển mỗi phương trình của \(d,d'\) về dạng tổng quát từ đó tìm được hai vecto pháp tuyến tương ứng của mỗi đường thẳng, sau đó sử dụng điều kiện \(\overrightarrow {{n_d}} .\overrightarrow {{n_{d'}}} = 0\).
Lời giải chi tiết
Phương trình tổng quát của đường thẳng \(d,d'\) lần lượt là: \(ax - y + b = 0,{\rm{ }}a'x - y + b' = 0\).
Do đó \(\overrightarrow {{n_d}} = \left( {a; - 1} \right),{\rm{ }}\overrightarrow {{n_{d'}}} = \left( {a'; - 1} \right)\).
Ta có \(d \bot d' \Leftrightarrow \overrightarrow {{n_d}} \bot \overrightarrow {{n_{d'}}} \Leftrightarrow \overrightarrow {{n_d}} .\overrightarrow {{n_{d'}}} = 0 \Leftrightarrow a.a' + \left( { - 1} \right)\left( { - 1} \right) = 0 \Leftrightarrow a.a' = - 1\).
- Giải bài 7.12 trang 41 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.10 trang 41 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.9 trang 41 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.8 trang 41 SGK Toán 10 – Kết nối tri thức
- Giải bài 7.7 trang 41 SGK Toán 10 – Kết nối tri thức
>> Xem thêm
Luyện Bài Tập Trắc nghiệm Toán 10 - Kết nối tri thức - Xem ngay